[1] Watts D J. A simple model of global cascades on random networks[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(9): 5766-5771.[2] Callaway D, Newman M, Strogatz S, et al. Network robustness and fragility:Percolation on random graphs[J]. Physical Review Letters, 2000, 85(25):5468-5471.[3] Newman M E J. Random graphs as models of networks[M]// Bornholdt S, Schuster H G. Handbook of Graphs and Networks: From the Genome to the Internet. New York:John Wely,2002[4] Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distribution and their applications[J]. Physical Review, 2001, 6402(2):026118.[5] Gleeson J P, Cahalane D J. Seed size strongly affects cascades on random networks[J]. Physical Review E, 2007,75:056103.[6] Upper C. Simulation methods to assess the danger of contagion in interbank markets[J]. Journal of Financial Stability, 2011, 7(3):111-125.[7] Nier E, Yang Jing, Yorulmazer T, et al. Network models and financial stability[J]. Journal of Economic Dynamics & Control, 2007,31(6):2033-2060.[8] Gai P, Kapadia S. Contagion in financial networks[J].Proceedings of the Royal Society A, 2010:rspa 20090410.[9] Stiglitz J. Risk and global economic architecture: Why full financial integration may be undesirable[R]. NBER Working Paper, 2010.[10] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review Letters,2001,86(14):3200.[11] Watts D J, Strogatz S H. Collective dynamics of ‘small-world' networks[J]. Nature,1998, 393: 440-442.[12] Gleeson J P, Hurd T R, Melnik S, et al. Systemic risk in banking networks without Monte Carlo simulation[M]// Kranakis E. Advances in network analysis and its applications. New York: Springer Verlag, 2011. |