[1] 马建庆,钟亦平,张世永.基于兴趣度的关联规则挖掘算法[J].计算机工程,2006,32(17),121-122.[2] 朱恒民,姬小利,王宁生.一种挖掘意外规则的方法[J].南京航空航天大学学报,2005,37(3):381-385.[3] 韦素云,吉根林,曲维光.关联规则的冗余删除与聚类[J].小型微型计算机系统,2006,27(1):110-113.[4] 杨立波.基于聚类的关联规则挖掘算法[J].太原大学学报,2011,12(3):113-116.[5] 朱正祥.领域驱动知识发现方法研究[D].大连:大连理工大学,2010.[6] 李军.智能知识管理模型与获取算法研究[D].北京:中国科学院研究生院,2011.[7] 朱靖波,陈文亮。基于领域知识的文本分类[J].东北大学学报(自然科学版),2005,26(8):733-735。[8] 杨立.基于领域知识的知识发现研究[D].北京:中国科学院软件研究所,2005.[9] 张文凌.领域知识参与数据挖掘预处理阶段的研究[D].北京:北京工业大学,2006.[10] 朱恒民.领域知识制导的数据挖掘技术及其在中药提取中的应用[D].南京:南京航空航天大学,2006.[11] 莫富强.基于领域知识的贝叶斯网络学习研究[D].合肥:合肥工业大学,2008.[12] Hand D,Mannila H,Smyth P.数据挖掘原理[M].张银奎,廖丽,宋俊,译.北京:机械工业出版社,2003.[13] Lavrac N, Flach P, Zupan B. Rule evaluation measures: A unifying view[C]. Proceedings of the Ninth International Workshop on Inductive Logic Programming, Bled, Slovenia,June 24-27,1999.[14] Agrawal R,Imielinski T,Swami A. Mining association rules between sets of items in large databases[C]. Proceedings of the ACM SIGMOD Conference on Management of Data,Washington,DC,May 26-28,1993.[15] Ludwig J, Livingstone G. What's new using prior models as a measure of novelty in knowledge discovery[C]. Proceedings of the 24th IEEE Conference on Tools with Artificial Intelligence,Athens,November 7-9,2012.[16] Silberschatz A,Tuzhilin A.What makes patterns interesting in knowledge discovery systems[J]. IEEE Trans Transactions on. Knowledge and Data Engineering, 1996,8(6):970-974.[17] Freitas A.On rule interestingness measures[J]. Knowledge Based Systems,1999,12(5):309-315.[18] Geng Liqiang, Hamilton H J. Choosing the right lens: Finding what is interesting in data mining[M]//Guillet F,Hamilton H J. Quality measures in data mining. Berlin Heidelberg: Springer, 2007: 3-24.[19] Hilderman R J, Hamilton H J. Measuring the interestingness of discovered knowledge: A principled approach[J]. Intelligent Data Analysis, 2003, 7(4): 347-382.[20] Guillet F, Hamilton H J. Quality measures in data mining[M]. Berlin: Springer, 2007.[21] Dong Guozhu, Li Jinyan. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness[M]//Wu Xinding,Kotagiri R,Korb K B. Research and development in knowledge discovery and data mining. Berlin Heidelberg: Springer, 1998: 72-86.[22] Lu Songfeng, Hu Heping, Li Fan. Mining weighted association rules[J]. Intelligent Data Analysis, 2001, 5(3): 211-225.[23] Shen Yidong, Zhang Zhong, Yang Qiang. Objective-oriented utility-based association mining[C]. Proceedings of the IEEE International Conference on Data Mining,Maebashi City,Japan,December 9-12,2002.[24] Yao Hong, Hamilton H J, Butz C J. A foundational approach to mining itemset utilities from databases[C]. Proceedings of the 2004 SIAM International Conference on Data Mining,Florida,April 22-24,2004.[25] Ling C X, Chen Tielin, Yang Qiang, et al. Mining optimal actions for profitable CRM[C]. Proceedings of the IEEE International Conference on Data Mining,Maebashi City,Japan,December 9-12.2002.[26] Wang Ke, Zhou Sengjang, Han Jianwei. Profit mining: From patterns to actions[M]//Bertion E,christodoulakiss,Plexousakis D. Advances in Database Technology. Berlin Heidelberg: Springer, 2002: 70-87. |