主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

Chinese Journal of Management Science ›› 2015, Vol. 23 ›› Issue (10): 147-155.doi: 10.16381/j.cnki.issn1003-207x.2015.10.017

• Articles • Previous Articles     Next Articles

Inconsistency Judgment Matrix Ranking Method Based on Manifold Learning

WANG Hong-Bo1,2, LUO He1, YANG Shan-Lin1,2   

  1. 1. School of Management, Hefei University of Technology, Hefei 230009, China;
    2. Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China
  • Received:2013-09-11 Revised:2014-02-10 Online:2015-10-20 Published:2015-10-24

Abstract: To solve the problems of the traditional AHP method which needs to satisfy the consistency condition in constructing judgment matrixes, the reasons of consistency regulation from AHP are studied and an inconsistency judgment matrix ranking method based on manifold learning is proposed in this paper. In the ranking process of inconsistency judgment matrixes, on the basis of the neighbor distance, the neighbor distance matrixes of the data sets corresponding to judgment matrixes are constructed firstly. Next each data point is mapped to a low-dimensionally global coordinate system based on the linear representations of the neighbor points, and the low-dimensional embeddings that correspond to judgment matrixes are obtained. Then the ranking conclusion is gotten by analyzing the superiority and inferiority ranking of the elements according to the correspondingly calculated low-dimensional embeddings from each hierarchy. Finally, a numerical example illustrates that the proposed method has a higher level of effectiveness and practicability.

Key words: analytic hierarchy process, manifold learning, judgment matrix, consistency check, ranking method

CLC Number: