[1] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics,2004, 2(1):1-48.[2] Jacod J. Asymptotic properties of realized power variations and related functionals of semimartingales[J]. Stochastic Processes and their Applications, 2008,118(4):517-559.[3] Mancini C. Estimating the integrated volatility in stochastic volatility models with Levy type jumps[J]. Astronomy & Astrophysics,2006.[4] Mancini C. Non parametric threshold estimation for models with stochastic diffusion coefficients and jumps[J].Scandinavian Journal of Statistics, 2009, 36(2):270-296[5] Zhang Lan.Efficient estimation of stochastic volatility using noisy observations:A multi-scale approach[J].Bernoulli,2006, 12(6):1019-1043.[6] Zhang Lan, Mykland P A, Xt-Sahalia P A.A tale of two time scales:Determining integrated volatility with noisy high frequency data[J].Journal of the American Statistical Association,2005, 100(472):1394-1411.[7] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al.Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise[J].Econometrica, 2008,76(6):1481-1536.[8] Zhou Bin.High-frequency data and volatility in foreign-exchange rates[J]. Journal of Business and Economic Statistics, 1996,14(1):45-52.[9] Jacod J, Li Yinqing, Mykland P A, et al.Microstructure noise in the continuous case:The pre-averaging approach[J].Stochastic Processes and their Applications, 2009,119(7):2249-2276.[10] Podolskij M, Vetter M.Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps[J].Bernoulli, 2009,15(3):634-658.[11] Andersen T G, Bollerslev T, Diebold F X, et al.The distribution of realized stock return volatility[J].Journal of Financial Economics,2001, 61(1):43-76.[12] Bandi F M,Russell J R.Microstructure noise, realized variance, and optimal sampling[J]. Review of Economic Studies, 2006,75(2):339-369.[13] Bollen B, Inder B.Estimating daily volatility in financial markets utilizing intraday data[J].Journal of Empirical Finance,2002, 9(5):551-562.[14] Hansen P R, Large J, Lunde A.Moving average-based estimators of integrated variance[J].Econometric Reviews, 2008,27(1-3):79-111.[15] Corsi F, Zumbach G, Müller U A. Consistent high-precision volatility from high-frequency data[J].Economic Notes, 2001,30(2):183-204.[16] Fan Jianqing, Wang Yazhen. Multi-scale jump and volatility analysis for high-frequency financial data[J].Journal of the American Statistical Association,2007, 102(480):1349-1362.[17] Barndorff-Nielsen O E, Shephard N.Econometrics of testing for jumps in financial economics using bipower variation[J].Journal of Financial Econometrics,2006, 4(1):1-30.[18] Jiang G J, Oomen R C A.Testing for jumps when asset prices are observed with noise a "swap variance" Approach[J].Journal of Econometrics,2008, 144(2):352-370.[19] Lee S S,Mykland P A.Jumps in financial markets:A new nonparametric test and jump dynamics[J]. Review of Financial studies, 2008,21(6):2535-2563.[20] Aït-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process[J]. Annals of Statistics, 2009b,37(1):184-222.[21] 胡素华, 张世英, 张彤. 双指数跳跃扩散模型的MCMC估计[J]. 系统工程学报, 2006, 21(2):113-118.[22] 任枫, 汪波, 段晶晶. 非对称双指数跳跃扩散模型的MCMC估计[J]. 系统工程, 2009, 27(7):39-42.[23] 马宇超, 陈敏, 蔡宗武,等.中国股市权证定价的带均值回归跳跃扩散模型[J]. 系统工程理论与实践,2010,30(1):14-21.[24] 曹宏铎, 李旲, 何智. 股票价格运行的幂律特征及幂律跳跃扩散模型[J]. 管理科学学报, 2011, 14(9):46-59.[25] 陈国进, 王占海. 我国股票市场连续性波动与跳跃性波动实证研究[J]. 系统工程理论与实践,2010,30(9):1554-1561.[26] 杨科, 陈浪南. 基于C_TMPV的中国股市高频波动率的跳跃行为研究[J].管理科学, 2011, 24(2):103-112.[27] 唐勇, 张伯新. 基于高频数据的中国股市跳跃特征实证分析[J].中国管理科学, 2013, 21(5):29-39.[28] 欧丽莎, 袁琛, 李汉东. 中国股票价格跳跃实证研究[J]. 管理科学学报, 2011, 14(9):60-66.[29] 马丹, 尹优平. 噪声, 跳跃与高频价格波动——基于门限预平均实现波动的分析[J]. 金融研究, 2012(4):124-139.[30] 唐勇, 寇贵明. 股票市场微观结构噪声, 跳跃, 流动性关系分析[J].中国管理科学, 2012,20(2):11-19.[31] Aït-Sahalia Y, Mykland P A, Zhang Lan. How often to sample a continuous-time process in the presence of market microstrutcture noise[J].Review of Financial Studies,2005,18(2):351-416.[32] Aït-Sahalia Y, Jacod J. Estimating the degree of activity of jumps in high frequency data[J].The Annals of Statistics, 2009a,37(5A):2202-44.[33] Aït-Sahalia Y, Jacod J. Is brownian motion necessary to model high-frequency data[J].The Annals of Statistics, 2010, 38(5):3093-3128.[34] Aït-Sahalia Y, Jacod J. Testing whether jumps have finite or infinite activity[J].The Annals of Statistics, 2011,39(3):1689-1719.[35] Aït-Sahalia Y, Mykland P A, Zhang Lan.Ultra high frequency volatility estimation with dependent microstructure noise[J]. Journal of Econometrics,2011,160(1):160-175.[36] Aït-Sahalia Y, Jacod J.Analyzing the spectrum of asset returns:Jump and volatility components in high frequency data[J]. Journal of Economic Literature, 2012, 50(4):1007-1050.[37] Merton R C. Option pricing when underlying stock returns are discontinuous[J].Journal of Financial Economics,1976,3(1-2):125-44.[38] Ball C A, Torous W N. A simplified jump process for common stock returns[J].Journal of Financial and Quantitative Analysis,1983, 18(1):53-65.[39] Bates D S. The crash of '87:Was it expected? The evidence from options markets[J].The Journal of Finance,1991,46(3):1009-1044.[40] Darrell D, Pan Jun, Singleton K.Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica,2000,68(6):1343-76.[41] Barndorff-Nielsen O E. Normal inverse gaussian distributions and stochastic volatility modelling[J].Scandinavian Journal of Statistics,1997, 24(1):1-13.[42] Barndorff-Nielsen O E. Processes of normal inverse gaussian type[J].Finance and Stochastics,1997, 2(1):41-68.[43] Carr P, Geman H, Madan D B,et al. The fine structure of asset returns:An empirical investigation[J].The Journal of Business,2002, 75(2):305-32.[44] Carr P, Wu Liuren. The finite moment log stable process and option pricing[J].Journal of Finance, 2003, 58(2):753-77.[45] Carr P, Wu Liuren. Time-changed Levy processes and option pricing[J].Journal of Financial Economics,2004,71(1):113-41.[46] Mancini C. Disentangling the jumps of the diffusion in a geometric jumping brownian motion[J].Giornale dell'Istituto Italiano Attuari,2001,64:19-47.[47] Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics,2005,3(4):456-99.[48] Andersen T G. Tim Bollerslev, and Francis X.Diebold. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J].Review of Economics and Statistics,2007,89(4):701-720.[49] Cont R, Mancini C. Nonparametric tests for pathwise properties of semimartingales[J].Bernoulli,2011,17(2):781-813.[50] Todorov V, Tauchen G. Activity signature functions for high-frequency data analysis[J].Journal of Econometrics,2010, 154(2):125-38.[51] Belomestny D. Spectral estimation of the fractional order of a Levy process[J].The Annals of Statistics,2010,38(1):317-51.[52] Hasbrouck J. Assessing the quality of a security market:A new approach to transaction-cost measurement[J].Review of Financial Studies,1993,6(1):191-212. |