[1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77-91.[2] Artzner P, Delbaen F, Eber J M, 等. Coherent measures of risk[J]. Mathematical Finance, 1999, 9(3):203-228.[3] 杜红军, 王宗军. 基于Copula-AL法的VaR和CVaR的度量与分配[J]. 中国管理科学, 2012, 20(3):1-9.[4] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3):21-42.[5] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking & Finance, 2002, 26(7):1443-1471.[6] Quaranta A G, Zaffaroni A. Robust optimization of conditional value at risk and portfolio selection[J]. Journal of Banking & Finance, 2008, 32(10):2046-2056.[7] De Giorgi E. A note on portfolio selections under various risk measures[R]. Working Paper, Citeseer, 2002.[8] 许启发, 张金秀, 蒋翠侠. 基于非线性分位数回归模型的多期VaR风险测度[J]. 中国管理科学, 2015, 23(3):56-65.[9] Koenker R, Bassett Jr G W. Regression quantiles[J]. Econometrica, 1978, 46(1):33-50.[10] Bassett Jr G W, Koenker R, Kordas G. Pessimistic portfolio allocation and Choquet expected utility[J]. Journal of Financial Econometrics, 2004, 2(4):477-492.[11] Laurini MP, Vieira HP. Pessimistic preferences and portfolio allocation-Emprical analysis and applications in risk management[J]. Revista de Economia e Administra, 2006, 6(3):347.[12] 陈守东, 王妍. 我国金融机构的系统性金融风险评估-基于极端分位数回归技术的风险度量[J]. 中国管理科学, 2014, 22(7):10-17.[13] 陈艺萍, 张信东, 史金凤. 零杠杆公司业绩研究[J]. 中国管理科学, 2016, 24(6):171-176.[14] Yen Y-M, Yen T-J. Solving norm constrained portfolio optimization via coordinate-wise descent algorithms[J]. Computational Statistics & Data Analysis, 2014, 76(2):737-759.[15] Fan Jiarqing, Zhang Jingjin, Yu Ke. Vast portfolio selection with gross-exposure constraints[J]. Journal of the American Statistical Association, 2012, 107(498):592-606.[16] Brodie J, Daubechies I, De Mol C, et al. Loris I. Sparse and stable Markowitz portfolios[J]. Proceedings of the National Academy of Sciences, 2009, 106(30):12267-12272.[17] Fastrich B, Paterlini S, Winker P. Constructing optimal sparse portfolios using regularization methods[J]. Computational Management Science, 2012, 12(3):417-434.[18] Zheng Qi, Gallagher C, Kulasekera K B. Adaptive penalized quantile regression for high dimensional data[J]. Journal of Statistical Planning and Inference, 2013, 143(6):1029-1038.[19] Belloni A, Chernozhukov V. L1-penalized quantile regression in high-dimensional sparse models[J]. The Annals of Statistics, 2011, 39(1):82-130.[20] 张茂军, 秦学志, 南江霞. 损失厌恶下带有风险约束的委托投资组合模型[J]. 系统工程学报, 2012, 27(4):513-519.[21] 苏治, 秦磊, 方彤. 含有图结构约束的稀疏最小方差资产组合模型[J]. 中国管理科学, 2015, 23(9):65-70.[22] Chen Yan, Wang Xuancheng. A hybrid stock trading system using genetic network programming and mean conditional value-at-risk[J]. European Journal of Operational Research, 2015, 240(3):861-871.[23] 邱若臻, 苑红涛, 黄小原. 基于似然估计的零售商库存鲁棒均值-风险模型[J]. 中国管理科学, 2016, 24(8):123-131.[24] 黄金波, 李仲飞, 周鸿涛. 期望效用视角下的风险对冲效率[J]. 中国管理科学, 2016, 24(3):9-17.[25] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society:Series B, 1996, 58(1):267-288.[26] Li Youjuan, Zhu Ji. L1-norm quantile regression[J]. Journal of Computational and Graphical Statistics, 2008, 17(1):163-185.[27] 蒋翠侠, 刘玉叶, 许启发. 基于LASSO分位数回归的对冲基金投资策略研究[J]. 管理科学学报, 2016, 19(3):107-126.[28] Koenker R, Ng P, Portnoy S. Quantile smoothing splines[J]. Biometrika, 1994, 81(4):673-680. |