[1] Wang Y S. The impact of crisis events and macroeconomic activity on Taiwan's international inbound tourism demand[J]. Tourism Management, 2009, 30(1):75-82.[2] Faulkner B, Russell R. Chaos and complexity in tourism:In search of a new perspective[J]. Pacific Tourism Review, 1997, 1(2):93-102.[3] Prideaux B, Laws E, Faulkner B. Events in Indonesia:Exploring the limits to formal tourism trends forecasting methods in complex crisis situations[J]. Tourism Management, 2003, 24(4):475-487.[4] Goh C, Law R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention[J]. Tourism Management, 2002, 23(5):499-510.[5] Law R. The impact of the Asian financial crisis on Japanese demand for travel toHong Kong:A study of various forecasting techniques[J]. Journal of Travel & Tourism Marketing, 2001, 10(2-3):47-65.[6] Huang J H, Min J C H. Earthquake devastation and recovery in tourism:The Taiwan case[J]. Tourism Management, 2002, 23(2):145-154.[7] Min J C H. The effect of the SARS illness on tourism in Taiwan:An empirical study[J]. International Journal of Management, 2005, 22(3):497-508.[8] Kuo H I, Chen C C, Tseng W C, et al. Assessing impacts of SARS and Avian Flu on international tourism demand to Asia[J]. Tourism Management, 2008, 29(5):917-928.[9] Wang Y S. The impact of crisis events and macroeconomic activity on Taiwan's international inbound tourism demand[J]. Tourism Management, 2009, 30(1):75-82.[10] Fang Yue. Forecasting combination and encompassing tests[J]. International Journal of Forecasting, 2003, 19(1):87-94.[11] Wong K K F, Song H Y, Witt S F, et al. Tourism forecasting:To combine or not to combine[J]. Tourism Management,2007,28(4):1068-1078.[12] Shahrabi J, Hadavandi E, Asadi S. Developing a hybrid intelligent model for forecasting problems:Case study of tourism demand time series[J]. Knowledge-Based Systems, 2013, 43(2):112-122.[13] 张金良.电力市场环境下的短期电价混合预测模型研究[D].北京:华北电力大学,2011.[14] Khashei M, Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting[J]. Applied Soft Computing, 2011, 11(2):2664-2675.[15] Fard A K, Akbari-Zadeh M R. A hybrid method based on wavelet, ANN and ARIMA model for short-term load forecasting[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2014, 26(2):167-182.[16] Li Xuemei, Ding Lixing, Deng Yuyan, et al. Hybrid support vector machine and ARIMA model in building cooling prediction[C].Proceedings of 2010 International Symposium on Computer Communication Control and Automation (3CA), Tainan,Taiwan,May 5-7, 2010.[17] 王书平, 胡爱梅, 吴振信. 基于多尺度组合模型的铜价预测研究[J]. 中国管理科学, 2014,22(8):21-28.[18] Chen K Y, Wang C H. A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan[J]. Expert Systems with Applications, 2007, 32(1):254-264.[19] Pai P F, Lin C S. A hybrid ARIMA and support vector machines model in stock price forecasting[J]. Omega, 2005, 33(6):497-505.[20] 姚智胜, 邵春福, 熊志华. 基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J]. 中国管理科学, 2007, 15(1):64-68.[21] 李炳宇,萧蕴诗,汪镭.一种求解高维复杂函数优化问题的混合粒子群优化算法[J].信息与控制, 2004, 33(1):27-30.[22] Hong W C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model[J]. Energy Conversion and Management, 2009, 50(1):105-117.[23] Liu Bo, Wang Ling, Jin Yihui, et al. Improved particle swarm optimization combined with chaos[J]. Chaos, Solitons & Fractals, 2005, 25(5):1261-1271.[24] 刘军民,高岳林.混沌粒子群优化算法[J].计算机应用, 2008, 28(2):322-325.[25] 韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报, 2004, 16(7):1530-1532.[26] 谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报, 2007, 20(4):118-121.[27] 曹伟宏,何元,李宗省,等.丽江旅游气候舒适度与年内客流量变化相关性分析[J].地理科学, 2012, 32(12):1459-1564.[28] 赛英,张凤廷,张涛.基于支持向量机的中国股指期货回归预测研究[J].中国管理科学, 2013, 21(3):35-39.[29] 徐达宇,杨善林,罗贺,基于广义模糊软集理论的云计算资源需求组合预测研究[J].中国管理科学,2015,23(5):56-64. |