[1] Zhu Z X. China statistical yearbook[M]. Beijing:China Statistics Press,2013.[2] Ahmad A, Hassan M Y, Abdullah M P, et al. A review on applications of ANN and SVM for building electrical energy consumption forecasting[J]. Renewable and Sustainable Energy Reviews, 2014, 33(5):102-109.[3] Yu Shiwei, Wei Yiming, Wang Ke. China's primary energy demands in 2020:Predictions from an MPSO-RBF estimation model[J]. Energy Conversion and Management, 2012, 61:59-66.[4] 杨波, 郭剑川, 谭章禄. 基于国民生产总值增长率微调制的国家能源年度消费总量Logistic修正模型研究[J]. 中国管理科学, 2017,25(6):32-38.[5] Zeng Chunlei, Wu Changchun, Zuo Lili, et al., Predicting energy consumption of multiproduct pipeline using artificial neural networks[J]. Energy, 2014,66:791-798.[6] Pindyck R S, Rubinfeld D L. Econometric models and economic forecasts[M]. Boston:McGraw-Hill Boston, 1998.[7] 曾波, 刘思峰, 曲学鑫. 一种强兼容性的灰色通用预测模型及其性质研究[J]. 中国管理科学, 2017, 25(5):150-156.[8] 杨保华, 赵金帅. 优化离散灰色幂模型及其应用[J]. 中国管理科学, 2016, 24(2):162-168.[9] Erdogdu E. Electricity demand analysis using cointegration and ARIMA modelling:A case study of Turkey[J]. Energy Policy, 2007, 35(2):1129-1146.[10] Nilsson N J. Principles of artificial intelligence[M]. San Francisceo:Morgan Kaufmann, 2014.[11] 胡雪棉, 赵国浩. 基于Matlab的BP神经网络煤炭需求预测模型[J]. 中国管理科学, 2008, 16(S1):512-525.[12] 卫敏, 余乐安. 具有最优学习率的RBF神经网络及其应用[J]. 管理科学学报, 2012, 15(4):50-57.[13] 张冬青, 马宏伟, 宁宣熙. 基于结构可变的RBF神经网络的时间序列预测[J]. 中国管理科学, 2010, 18(3):83-89.[14] 彭建良, 李新建. 能源消费量模拟分析和预测的神经网络方法[J]. 系统工程理论与实践, 1998, 18(7):76-83.[15] Lu C J, Lee T S, Chiu C C. Financial time series forecasting using independent component analysis and support vector regression[J]. Decision Support Systems, 2009, 47(2):115-125.[16] Brereton R G,Lloyd G R. Support vector machines for classification and regression[J]. The Analyst,2009,135(3):230-287.[17] Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using support vector regression[J]. Applied Energy, 2011, 88(1):368-375.[18] 陈荣, 梁昌勇, 谢福伟,等. 基于自适应GA-SVR的旅游景区日客流量预测[J]. 中国管理科学, 2012,20(S1):61-66.[19] Kova?i? M, Šarler B. Genetic programming prediction of the natural gas consumption in a steel plant[J]. Energy, 2014, 66:273-284.[20] Lee D G, Lee B W, Chang S H. Genetic programming model for long-term forecasting of electric power demand[J]. Electric Power SystemsResearch, 1997, 40(1):17-22.[21] Wang Shuai, Yu Lean, Tang Ling, et al. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China[J]. Energy, 2011, 36(11):6542-6554.[22] Ivakhnenko A G. Polynomial theory of complex systems[J]. IEEE transactions on Systems, Man and Cybernetics, 1971, 1(4):364-378.[23] Xiao Jin, Xie Ling,He Changzheng,et al. Dynamic classifier ensemble model for customer classification with imbalanced class distribution[J]. Expert Systems with Applications, 2012, 39(3):3668-3675.[24] Xiao Jin, Xiao Yi,Huang Anqiang, et al. Feature-selection-based dynamic transfer ensemble model for customer churn prediction[J]. Knowledge and Information Systems, 2015, 43(1):29-51.[25] Xiao Jin,Jiang Xiaoyi,He Changzheng, et al. Churn prediction in customer relationship management via GMDH-based multiple classifiers ensemble[J]. IEEE Intelligent Systems, 2016, 31(2):37-44.[26] Xiao Jin,He Changzheng,Jiang Xiangyi, et al. A dynamic classifier ensemble selection approach for noise data[J]. Information Sciences, 2010, 180(18):3402-3421.[27] Xiao Jin, He Changzheng, Jiang Xiaoyi. Structure identification of bayesian classifiers based on GMDH[J]. Knowledge-Based Systems, 2009. 22(6):461-470.[28] Xiao Jin, Cao Hanwen,Jiang Xiaoyi, et al. GMDH-based semi-supervised feature selection for customer classification[J]. Knowledge-Based Systems, 2017, 132(9):236-248.[29] 贺昌政. 自组织数据挖掘与经济预测[M]. 北京:科学出版社, 2005.[30] Xiao Jin, Sun Haiyan,HuYi, et al. GMDH based auto-regressive model for China's energy consumption prediction[C]//Proceedings of 2015 International Conference on Logistics, Informatics and Service Sciences,Barelona,Sipain,July,27-29. 2015. |