[1] Andersen T G, Bollerslev T, Diebold F X, et al. Exchange rate returns standardized by realized volatility are (nearly) Gaussian[J]. Multinational Finance Journal, 2000, 4(3/4):159-179.[2] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock volatility[J]. Journal of Financial Economics, 2001, 61(1):43-76.[3] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2(1):1-37.[4] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial econometrics using bipower variation[J]. Journal of Financial Econometrics, 2006,4(1):1-30.[5] Barndorff-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk-realized semivariance[R]. Working Paper Oxford Financial Research Center,2008.[6] Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4):456-499.[7] Andersen T G, Bollerslev T, Diebold F X. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J]. The Review of Economics and Statistics, 2007, 89(4):701-720.[8] Lee S S, Mykland P A. Jumps in financial markets:A new nonparametric test and jump dynamics[J]. Review of Financial studies, 2008, 21(6):2535-2563.[9] Jiang G J, Oomen R C A. Testing for jumps when asset prices are observed with noise-A "swap variance" approach[J]. Journal of Econometrics, 2008, 144(2):352-370.[10] Aït-Sahalia Y, Jocad J, Testing for jumps in a discretely observed process[J]. The Annals of Statistic, 2009, 37(1):184-222.[11] Podolskij M, Ziggel D. New tests for jumps in semimartingale models[J]. Statistical Inference for Stochastic Processes, 2010, 13(1):15-41.[12] Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2):276-288.[13] Andersen T G, Dobrev D, Schaumburg E. Jump-robust volatility estimation using nearest neighbor truncation[J]. Journal of Econometrics, 2012, 169(1):75-93.[14] Benoit S, Forecasting the volatility of crude oil futures using intraday data[J]. European Journal of Operational Research, 2014, 235(3):643-659.[15] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2):174-196.[16] Corsi F, Reno R, HAR volatility modelling with heterogeneous leverage and jumps[R]. Working Paper,Universita di Siena,2009.[17] Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2):276-288.[18] Patton A J, Sheppard K. Good volatility, bad volatility:Signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2013, 97(3):683-697.[19] Audrino F, Hu Yujia. Volatility forecasting:Downside risk, jumps and leverage effect[J]. Econometrics, 2016,4(8):1-24.[20] Vortelinos D I. Forecasting realized volatility:HAR against principal components combining neural networks and GARCH[J]. Research in International Business and Finance, 2017,39(part B):824-839.[21] Bollerslev T, Patton A J, Quaedvlieg R. Exploiting the errors:A simple approach for improved volatility forecasting[J]. Journal of Econometrics, 2016(1), 192(1):1-18.[22] Hansen P R. A test for superior predictive ability[J]. Journal of Business and Economic Statistics, 2005, 23(4):365-380.[23] Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2):453-497.[24] 魏宇. 沪深300股指期货的波动率预测模型研究[J]. 管理科学学报,2010,13(2):66-76.[25] 马峰,魏宇,黄登仕,等. 基于跳跃和符号跳跃变差的HAR-RV预测模型及其MCS检验[J]. 系统管理学报,2015,24(5):700-710.[26] 李洋,乔高秀. 沪深300股指期货市场连续波动与跳跃波动——基于已实现波动率的实证研究[J]. 中国管理科学,2012,20(S1):451-457.[27] Fang Nengsheng, Jiang Wen, Luo Ronghua. Realized semivariances and the variation of signed jumps in China's stock market[J]. Emerging Markets Finance and Trade, 2015,53(3):563-586.[28] Fang Nengsheng, Jiang Wen, Luo Ronghua. Asymmetric predictability of realized semivariances and the variations of signed jumps:Evidence from China's stock market[R]. Social Science Electronic Publishing,2015.[29] Andersen T G, Bollerslev T, Frederiksen P,et al. Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns[J]. Journal of Applied Econometrics, 2010, 25(2):233-261.[30] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Statistics, 2006, 24(2):127-160.[31] 闵素芹,柳会珍. 已实现波动率中最优抽样频率的选择[J]. 统计与决策,2009,(13):13-15.[32] 李胜歌,张世英. 金融高频数据的最优抽样频率研究[J]. 管理学报,2008,5(6):801-806.[33] Bandi F M, Russell J R. Separating microstructure noise from volatility[J]. Journal of Financial Economics, 2006, 79(3):655-692.[34] Bandi F M, Russell J R. Microstructure noise, realized volatility, and optimal sampling[J]. The Review of Economic Studies,2008,75(2):339-369.[35] 翟慧,程思逸. 考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究[J]. 中国管理科学,2016,24(12):10-19.[36] 赵华. 中国股市的跳跃性与杠杆效应——基于已实现极差方差的研究[J]. 金融研究,2012,(11):179-192.[37] 孙洁. 考虑跳跃和隔夜波动的中国股票市场波动率建模与预测[J]. 中国管理科学,2014,22(6):114-124.[38] 陈国进,刘晓群,谢沛霖,等. 已实现跳跃波动与中国股市风险溢价研究[J]. 管理科学学报,2016,19(6):98-113. |