[1] Kim S, Shephard N, Chib S。Stochastic volatility:Likelihood inference and comparison with ARCH models[J]. Review of Economic Studies, 1998, 65(3):361-393.[2] Yu Jun. Forecasting volatility in the New Zealand stock market[J]. Applied Financial Economics, 2002, 12(3):193-202.[3] Barndorff-Nielsen O E, Shephard N. Non-Gaussian Ornstein-Ulhlenbeck-based models and some of their uses in financial economics[J]. Journal of the Royal Statistical Society:Series B, 2001, 63(2):167-241.[4] Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models[J]. Journal of the Royal Statistical Society:Series B, 2002, 64(2):253-280.[5] 余白敏, 吴卫星. 基于"已实现"波动率ARFI模型和CAViaR模型的VaR预测比较研究[J]. 中国管理科学, 2015, 23(2):50-58.[6] 瞿慧, 程思逸. 考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究[J]. 中国管理科学, 2016, 24(12):10-19.[7] Takahashi M, Omori Y, Watanabe T. Estimating stochastic volatility models using daily returns and realized volatility simultaneously[J]. Computational Statistics & Data Analysis, 2009, 53(6):2404-2426.[8] Koopman S J, Scharth M. The analysis of stochastic volatility in the presence of daily realised measures[J]. Journal of Financial Econometrics, 2013, 11(1):76-115.[9] Shirota S, Hizu T, Omori Y. Realized stochastic volatility with leverage and long memory[J]. Computational Statistics & Data Analysis, 2014, 76:618-641.[10] Venter J H, de Jongh P J. Extended stochastic volatility models incorporating realised measures[J]. Computational Statistics & Data Analysis, 2014, 76:687-707.[11] Zheng Tingguo G, Song Tao. A realized stochastic volatility model with Box-Cox transformation[J]. Journal of Business & Economic Statistics, 2014, 32(4):593-605.[12] Dobrev D, Szerszen P. The information content of high-frequency data for estimating equity return models and forecasting risk[R]. Finance and Economis Discussion Series,et al. Working Paper, 2010.[13] Christoffersen P, Feunou B, Jacobs K, et al. The economic value of realized volatility:Using high-frequency returns for option valuation[J]. Journal of Financial and Quantitative Analysis, 2014, 49(3):663-697.[14] Takahashi M, Watanabe T, Omori Y. Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution[J]. International Journal of Forecasting, 2016, 32(2):437-457.[15] 吴鑫育, 李心丹, 马超群. 门限已实现随机波动率模型及其实证研究[J]. 中国管理科学, 2017, 25(3):10-19.[16] Hansen P R, Huang Zhuo, Shek H H. Realized GARCH:A joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6):877-906.[17] Hansen P R, Huang Zhuo. Exponential GARCH modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2):269-287.[18] 王天一, 黄卓. 高频数据波动率建模——基于厚尾分布的Realized-GARCH模型[J]. 数量经济技术经济研究, 2012, (5):149-161.[19] 王天一, 黄卓. Realized GAS-GARCH及其在VaR预测中的应用[J]. 管理科学学报, 2015, 18(5):79-86.[20] 王天一, 赵晓军, 黄卓. 利用高频数据预测沪深300指数波动率——基于Realized GARCH模型的实证研究[J]. 世界经济文汇, 2014, (5):17-30.[21] 唐勇, 刘微. 加权已实现极差四次幂变差分析及其应用[J]. 系统工程理论与实践, 2013, 33(11):2766-2775.[22] 黄友珀, 唐振鹏, 周熙雯. 基于偏t分布realized GARCH模型的尾部风险估计[J]. 系统工程理论与实践, 2015, 35(9):2200-2208.[23] 黄友珀, 唐振鹏, 唐勇. 基于藤copula-已实现GARCH的组合收益分位数预测[J]. 系统工程学报, 2016, 31(1):45-54.[24] Asai M, McAleer M, Medeiros M C. Asymmetry and long memory in volatility modelling[J]. Journal of Financial Econometrics, 2012, 10(3):495-512.[25] Asai M, McAleer M. Alternative asymmetric stochastic volatility models[J]. Econometric Reviews, 2011, 30(5):548-564.[26] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings F-Radar and Signal Processing, 1993, 140(2):107-113.[27] Malik S, Pitt M K. Particle filters for continuous likelihood evaluation and maximization[J]. Journal of Econometrics, 2011, 165(2):190-209.[28] Martens M, van Dijk D. Measuring volatility with the realized range[J]. Journal of Econometrics, 2007, 138(1):181-207.[29] 文凤华, 贾俊艳, 晁攸丛, 等. 基于加权已实现极差的中国股市波动特征[J]. 系统工程, 2011, 29(9):66-71.[30] 郑挺国, 左浩苗. 基于极差的区制转移随机波动率模型及其应用[J]. 管理科学学报, 2013, 16(9):82-94. |