[1] Charnes A, Cooper W W, Rhodes E. Measuring efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6):429-444.[2] Sexton T S, Silkman R H, Hogan A J. Data envelopment analysis:Critique and extensions[J]. New Directions for Program Evaluation, 1986, 1986(32):73-105.[3] Oral M, Kettani O, Lang P. A methodology for collective evaluation and selection of industrial R&D projects[J]. Management Science, 1991, 37(7):871-885.[4] Shang J, Sueyoshi T. A unified framework for the selection of flexible manufacturing system[J]. European Journal of Operational Research, 1995, 85(2):297-315.[5] Wu Jie, Liang Liang, Chen Yao. DEA game cross-efficiency approach to Olympic rankings[J]. Omega, 2009, 37(4):909-918.[6] Doyle J, Green R. Efficiency and cross efficiency in DEA:Derivations, meaning and the uses[J]. The Journal of the Operational Research Society, 1994, 45(5):567-578.[7] Doyle J, Green R. Cross-evaluation in DEA:Improving discrimination among DMUs[J]. INFOR:Information Systems and Operational, 1995, 33(3):205-222.[8] Liang Liang, Wu Jie, Cook W D, et al. Alternative secondary goals in DEA cross-efficiency evaluation[J]. International Journal of Production Economics, 2008, 113(2):1025-1030.[9] Liang Liang, Wu Jie, Cook W D, et al. The DEA game cross efficiency model and its Nash Equilibrium[J]. Operations Research, 2008, 56(5):1278-1288.[10] Wang Yingming, Chin K S. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications, 2010, 37(5):3666-3675.[11] 李春好, 苏航, 佟轶杰, 孙永河基于理想决策单元参照求解策略的DEA交叉效率评价模型[J]. 中国管理科学, 2015, 23(2):116-122.[12] Wang Yingming, Chin K S. The use of OWA operator weights for cross-efficiency aggrega-tion[J]. Omega:2011, 39(5):493-503.[13] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Systems Man and Cybernetics, 1988, 18(1):183-190.[14] Yang Feng, Ang Sheng, Xia Qiong, et al. Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis[J]. European Journal of Operatio-nal Research, 2012, 223(2):483-488.[15] Lahdelma R, Salminen P. SMAA-2:Stochastic multicriteria acceptability analysis for group decision making[J]. Operations Research, 2001, 49(3):444-454.[16] 吴杰, 梁樑, 查迎春. 基于核子解的最终交叉效率权系数确定方法[J]. 系统工程理论与实践, 2008, 28(5):92-97.[17] Wu Jie, Sun Jiasen, Liang Liang, et al. Determination of weights for ultimate cross efficiency using Shannon entropy[J]. Expert Systems with Applications, 2011, 38(5):5162-5165.[18] Wang Yingming, Wang S. Approaches to determining the relative importance weights for cross-efficiency aggregation in data envelopment analysis[J]. Journal of the Operational Research Society, 2013, 64(1):60-69.[19] 张启平, 刘业政, 姜元春. 决策单元交叉效率的自适应群评价方法[J]. 中国管理科学, 2014, 22(11):62-71.[20] Shapley LS. A value for n-person games[M]//Kuhn H W, Tucker A W. Contributions to the Theory of Games, Princeton University Press, Princeton, NJ, 1953.[21] Wong Y H, Beasley J E. Restricting weight flexibility in Data Envelopment Analysis[J]. Journal of the Operational Research Society, 1990, 41(9):829-835. |