[1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77-91.[2] Jondeau E, Rockinger M. Conditional volatility, skewness, and kurtosis:Existence, persistence, and comovements[J]. Journal of Economic Dynamics and Control, 2003, 27(10):1699-1737.[3] Jorion P. Value at risk:The new benchmark for managing financial risk[M]. New York:McGraw-Hill, 2007.[4] Engle R F, Manganelli S. CAViaR:Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business and Economic Statistics, 2004, 22(4):367-381.[5] 刘晓倩, 周勇. 加权复合分位数回归方法在动态VaR风险度量中的应用[J]. 中国管理科学, 2015, 23(6):1-8.[6] 王璇, 采俊玲, 汤铃, 等. 基于BEMD-Copula-GARCH模型的股票投资组合VaR风险度量研究[J]. 系统工程理论与实践, 2017, 37(2):303-310.[7] Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk[J]. Mathematical Finance, 1999, 9(3):203-228.[8] Taylor J W. Estimating value at risk and expected shortfall using expectiles[J]. Journal of Financial Econometrics, 2008, 6(2):231-252.[9] Kuan C-M, Yeh J-H, Hsu Y-C. Assessing value at risk with CARE, the Conditional Autoregressive Expectile models[J]. Journal of Econometrics, 2009, 150(2):261-270.[10] 王鹏, 鹿新华, 魏宇, 等. 中国金属期货市场的风险度量及其Backtesting分析[J]. 金融研究, 2012, (8):193-206.[11] 谢尚宇, 姚宏伟, 周勇. 基于ARCH-Expectile方法的VaR和ES尾部风险测量[J]. 中国管理科学, 2014, 22(9):1-9.[12] 刘晓倩, 周勇. 自回归模型的加权复合Expectile回归估计及其应用[J]. 系统工程理论与实践, 2016, 36(5):1089-1098.[13] 黄金波, 李仲飞, 姚海祥. 基于CVaR两步核估计量的投资组合管理[J]. 管理科学学报, 2016, 19(5):114-126.[14] 张冀, 谢远涛, 杨娟. 风险依赖、一致性风险度量与投资组合——基于Mean-Copula-CVaR的投资组合研究[J]. 金融研究, 2016, (10):159-173.[15] Lai T-Y. Portfolio selection with skewness:A multiple-objective approach[J]. Review of Quantitative Finance and Accounting, 1991, 1(3):293-305.[16] Sun Qian, Yan Yuxing. Skewness persistence with optimal portfolio selection[J]. Journal of Banking & Finance, 2003, 27(6):1111-1121.[17] 蒋翠侠, 许启发, 张世英. 基于多目标优化和效用理论的高阶矩动态组合投资[J]. 统计研究, 2009, 26(10):73-80.[18] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 29(1):1071-1074.[19] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking & Finance, 2002, 26(7):1443-1471.[20] Fan Jianqing, Zhang Jingjin, Yu Ke. Vast portfolio selection with gross-exposure constraints[J]. Journal of the American Statistical Association, 2012, 107(498):592-606.[21] Bassett G, Koenker R, Kordas G. Pessimistic portfolio allocation and choquet expected utility[J]. Journal of Financial Econometrics, 2004, 2(2):477-492.[22] Xu Q, Zhou Y, Jing C, et al. A large CVaR-based portfolio selection model with weight constraints[J]. Economic Modelling, 2016, 59:436-447.[23] Quaranta A G, Zaffaroni A. Robust optimization of conditional value at risk and portfolio selection[J]. Journal of Banking & Finance, 2008, 32(10):2046-2056.[24] Newey W K, Powell J L. Asymmetric least squares estimation and testing[J]. Econometrica, 1987, 55(4):819-847.[25] Yao Qiwei, Tong H. Asymmetric least squares regression estimation:A nonparametric approach[J]. Journal of Nonparametric Statistics, 1996, 6(2-3):273-292.[26] Sobotka F, Kneib T. Geoadditive expectile regression[J]. Computational Statistics & Data Analysis, 2012, 56(4):755-767.[27] Keating C, Shadwick W F. A universal performance measure[J]. Journal of Performance Measurement, 2002, 6(3):59-84.[28] 许启发, 周莹莹, 蒋翠侠. 带有范数约束的CVaR高维组合投资决策[J]. 中国管理科学, 2017, 25(2):40-49. |