[1] Andersen T G, Bollerslev T. Answering the critics:Yes, ARCH models do provide good volatility forecasts[J]. International Economic Review, 1998, 4:885-905.[2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2):579-625.[3] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2):174-196.[4] Andersen T G, Bollerslev T, Diebold F X. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J]. The Review of Economics and Statistics, 2007, 89(4):701-720.[5] Asai M, McAleer M, Medeiros M C. Asymmetry and long memory in volatility modeling[J]. Journal of Business & Economic Statistics, 2012, 10(3):495-512.[6] Corsi F, Renò R. Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling[J]. Journal of Business & Economic Statistics, 2012, 30(3):368-380.[7] Chen Xilong, Ghysels E. News-good or bad-and its impact on volatility predictions overmultiple horizons[J]. The Review of Financial Studies, 2011, 24(1):46-81.[8] Patton A J, Sheppard K. Good volatility, bad volatility:signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3):683-697.[9] Sévi B. Forecasting the volatility of crude oil futures using intraday data[J]. European Journal of Operational Research, 2014, 235(3):643-659.[10] Wen Fenghua, Gong Xu, Cai Shenghua. Forecasting the volatility of crude oil futures using HAR-type models with structural breaks[J]. Energy Economics, 2016, 59:400-413.[11] Degiannakis S, Filis G. Forecasting oil price realized volatility using information channels from other asset classes[J]. Journal of International Money & Finance, 2017, 76:28-49.[12] Ma Feng, Wahab M I M, Huang Dengshi, et al. Forecasting the realized volatility of the oil futures market:A regime switching approach[J]. Energy Economics, 2017, 67:136-145.[13] 龚旭, 文凤华, 黄创霞,等. HAR-RV-EMD-J模型及其对金融资产波动率的预测研究[J]. 管理评论, 2017, 29(1):19-32.[14] 瞿慧, 程思逸. 考虑成分股联跳与宏观信息发布的沪深300指数已实现波动率模型研究[J]. 中国管理科学, 2016, 24(12):10-19.[15] 唐勇, 林欣. 考虑共同跳跃的波动建模:基于高频数据视角[J]. 中国管理科学, 2015, 23(8):46-53.[16] Hammoudeh S, Li Huimin. Sudden changes in volatility in emerging markets:the case of Gulf Arab stock markets[J]. International Review of Financial Analysis, 2008, 17(1):47-63.[17] Mensi W, Hammoudeh S, Yoon S M. Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate[J]. Energy Economics, 2015, 48:46-60.[18] Ewing B T, Malik F. Volatility transmission between gold and oil futures under structural breaks[J]. International Review of Economics & Finance, 2013, 25:113-121.[19] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of financial Econometrics, 2006, 4(1):1-30.[20] Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal ofFinancial Econometrics, 2005, 3(4):456-499.[21] Shephard N, Kinnebrock S, Barndorff-Neilsen O E. Measuring downside risk-realisedsemivariance[M]. Oxford Department of Economics, University of Oxford, 2008.[22] Gong Xu, Wen Fenghua, Xia Xiaohua, et al. Investigating the risk-return trade-off for crude oil futures using high-frequency data[J]. Applied Energy, 2017, 196:152-161.[23] Liu L Y, Patton A J, Sheppard K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes[J]. Journal of Econometrics, 2015, 187(1):293-311.[24] Inclán C, Tiao G C. Use of cumulative sums of squares for retrospective detection of changes of variance[J]. Journal of the American Statistical Association, 1994, 89(427):913-923.[25] Hansen P R, Lunde A, James M N. The model confidence set[J]. Econometrica, 2011, 79(2):453-497.[26] Gong Xu, Lin Boqiang. Forecasting the good and bad uncertainties of crude oil prices using a HAR framework[J]. Energy Economics, 2017, 67:315-327.[27] Hansen P R. A test for superior predictive ability[J]. Journal of Business and Economic Statistics, 2005, 23(4):365-380.[28] 刘晓倩, 王健, 吴广. 基于高频数据HAR-CVX模型的沪深300指数的预测研究[J]. 中国管理科学, 2017, 25(6):1-10. |