[1] Shapley L S. A value for n-person games[M]//Kuhn H, Tucker A W. Contributions to the theory of games Ⅱ. Princeton:Princeton University Press, 1953.[2] Aumann R J, Maschler M. The bargaining set for cooperative games[J]. Advances in Game Theory,1964,52:443-476.[3] Myerson R B. Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2:225-229.[4] Gilles R P, Owen G, van den Brink R. Games with permission structures:The conjunctive approach[J]. International Journal of Game Theory, 1992, 20:277-293.[5] Derks J J M, Gilles R P. Hierarchical organization structures and constraints on coalition formation[J]. International Journal of Game Theory, 1995, 24:147-163.[6] Derks J J M, Reijnierse H. On the core of a collection of coalitions[J]. International Journal of Game Theory,1998,27:451-459.[7] Béal S, Rémila E, Solal P. Rooted-tree solutions for tree games[J]. European Journal of Operational Research, 2010, 203(2):404-408.[8] Herings P, van der Laan G, Talman D. The average tree solution for cycle free games[J]. Games and Economic Behavior, 2008, 62:77-92.[9] 孙红霞, 张强. 具有联盟结构的限制合作博弈的限制Owen值[J].系统工程理论与实践, 2013, 33(4):981-987.[10] Faigle U, Kern W. The Shapley value for cooperative games under precedence constraints[J]. International Journal of Game Theory, 1992, 21:249-266.[11] 张瑜, 菅利荣, 刘思峰, 等. 基于优化Shapley值的产学研网络型合作利益协调机制研究[J]. 中国管理科学,2016,24(9):36-44.[12] Choquet G. Theory of capacities[C]. Annales de l'institut Fourier,1954, 5:131-292.[13] 赵树平, 梁昌勇, 罗大伟. 基于VIKOR和诱导广义直觉梯形模糊Choquet积分算子的多属性群决策方法[J]. 中国管理科学,2016,24(6):132-142.[14] Gallardo J M, Jiménez N, Jiménez-Losada A, et al. Games with fuzzy authorization structure:A Shapley value[J]. Fuzzy Sets and Systems, 2015, 272:115-125.[15] 孙红霞, 张强. 具有模糊联盟博弈的Shapley值的刻画[J]. 系统工程理论与实践, 2010, 30(8):1457-1464.[16] 孙红霞. 基于Chouqet积分形式的模糊联盟核心[J]. 运筹与管理, 2015, 24(1):93-99.[17] 孟凡永, 张强. 具有Choquet积分形式的模糊合作对策[J]. 系统工程与电子技术, 2010, 33(4):981-987.[18] 单而芳, 张广. 准许树博弈的权重准许分支公平和准许树限制核[J]. 系统工程理论与实践, 2017, 37(7):1752-1760.[19] 杨靛青, 李登峰, 俞裕兰. 模糊联盟图合作对策(值[J]. 控制与决策, 2017, 32(9):1653-1758.[20] 邓聚龙. 灰理论基础[M]. 武汉:华中科技大学出版社,2002:70-71.[21] 闫书丽, 刘思峰, 朱建军, 等. 基于相对核和精确度的灰数排序方法[J].控制与决策,2014,29(2):315-319.[22] 王大澳, 菅利荣, 刘思峰, 等. 基于Choquet积分的多属性灰靶群决策方法[J]. 控制与决策,2017,32(7):1286-1292.[23] 汪贤裕, 肖玉明. 博弈论及其应用[M]. 北京:科学出版社, 2008. |