[1] Tsai J T, Wang J L, Tzeng L Y. On the optimal product mix in life insurance companies using conditional value at risk[J]. Insurance:Mathematics and Economics, 2010, 46(1):235-241.[2] Wang Chouwen, Huang Hongchih, Hong Dechuan. A feasible natural hedging strategy for insurance companies[J]. Insurance:Mathematics and Economics, 2013, 52(3):532-541.[3] Wong A, Sherris M, Stevens R. Natural hedging strategies for life insurers:Impact of product design and risk measure[J]. Journal of Risk and Insurance, 2017, 84(1):153-175.[4] 艾蔚. 基于金融衍生工具视角的长寿风险管理[J]. 保险研究, 2011(3):36-44.[5] 尚勤. 基于投资者视角的长寿债券设计——来自EIB/BNP的案例分析[J]. 管理案例研究与评论, 2014, 7(5):384-391.[6] Blake D, Cairns A J G, Dowd K. Living with mortality:Longevity bonds and other mortality-linked securities[J]. British Actuarial Journal, 2006, 12(1):153-197.[7] Blake D, Cairns A, Dowd K, et al. Longevity bonds:financial engineering, valuation, and hedging[J]. Journal of Risk and Insurance, 2006, 73(4):647-672.[8] Friedberg L, Webb A. Life is cheap:Using mortality bonds to hedge aggregate mortality risk[J]. The BE Journal of Economic Analysis & Policy, 2007, 7(1):1785-1785.[9] Bayraktar E, Young V R. Hedging life insurance with pure endowments[J]. Insurance:Mathematics and Economics, 2007, 40(3):435-444.[10] Young V R. Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio[J]. Insurance:Mathematics and Economics, 2008, 42(2):691-703.[11] Bauer D, Börger M, Ruß J. On the pricing of longevity-linked securities[J]. Insurance:Mathematics and Economics, 2010, 46(1):139-149.[12] Wang S S. A class of distribution operators for pricing financial and insurance risks[J]. The Journal of Risk and Insurance, 2000,67(1):15-36.[13] Wang S S. A universal framework for pricing financial and insurance risks[J]. ASTIN Bulletin, 2002,32(2):213-234.[14] Pelsser A. On the applicability of the wang transform for pricing financial risks[J]. ASTIN Bulletin,2008,38:171-181.[15] Bauer D, Börger M,Rub J. On the pricing of longevity-linked securities[J]. Insurance:Mathematics and Economics,2010,46(1):139-149.[16] Chen Bingzheng, Zhang Lihong, Zhao Lin. On the robustness of longevity risk pricing[J]. Insurance:Mathematics and Economics, 2010, 47(3):358-373.[17] Boyer M M, Stentoft L. If we can simulate it, we can insure it:An application to longevity risk management[J]. Insurance:Mathematics and Economics, 2013, 52(1):35-45.[18] Dahl M, Møller T. Valuation and hedging of life insurance liabilities with systematic mortality risk[J]. Insurance:mathematics and economics, 2006, 39(2):193-217.[19] Dahl M, Melchior M, Møller T. On systematic mortality risk and risk-minimization with survivor swaps[J]. Scandinavian Actuarial Journal, 2008, 2008,(2-3):114-146.[20] Blackburn C, Sherris M. Consistent dynamic affine mortality models for longevity risk applications[J]. Insurance:Mathematics and Economics, 2013, 53(1):64-73.[21] Yang Bowen, Li J, Balasooriya U. Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk[J]. Insurance:Mathematics and Economics, 2015, 62:16-27.[22] Li J S H. Pricing longevity risk with the parametric bootstrap:A maximum entropy approach[J].Insurance:Mathematics and Economics, 2010, 47(2):176-186.[23] 樊毅. 基于随机动态死亡率模型的长寿风险债券定价研究[D].长沙:湖南大学,2017.[24] Gompertz.On the nature of the function expressive of the law of human mortality and on a new model of determining life contingencies[J]. Philosophical Transactions of Royal Scociety of London,1825,115:513-585.[25] Heligman H, Pollard J. The age pattern of mortality[J].Journal of the institute of Actuaries,1980,107:49-80.[26] Carriere J F. Parametric models for life tables[J]. Transaction society of actuaries, Vol. 44:77-79,1992.[27] Lee R D, Carter L R. Modeling and forecasting US mortality[J]. Journal of the American statistical association, 1992, 87(419):659-671.[28] Cairns A J G, Blake D, Dowd K. A two-factor model for stochastic mortality with parameter uncertainty:Theory and calibration[J]. Journal of Risk and Insurance, 2006, 73(4):687-718.[29] Yang S S, Wang C W. Pricing and securitization of multi-country longevity risk with mortality dependence[J]. Insurance Mathematics & Economics, 2013, 52(2):157-169.[30] Chen Hua, MacMinn R D, Sun Tao. Multi-population mortality models:A factor copula approach[J]. Insurance:Mathematics and Economics, 2015, 63:135-146.[31] Chen Hua, MacMinn R D, Sun Tao. Mortality dependence and longevity bond pricing:A dynamic factor copula mortality model with the GAS structure[J]. Journal of Risk and Insurance, 2017, 84(S1):393-415.[32] 尚勤,秦学志,周颖颖.死亡强度服从Ornstein-Uhlenbeck跳过程的长寿债券定价模型[J].系统管理学报,2008,(3):297-302.[33] 尚勤,张国忠,胡友群,等.基于Cameron-Martin-Girsanov理论的长寿债券定价模型[J].系统管理学报,2013,22(4):472-476+486.[34] 郑玮,柴柯辰,钱林义.同出生年死亡率相关性效应下的长寿债券定价研究[J].应用概率统计,2014,30(1):72-83.[35] 巢文,邹辉文.基于双指数跳跃扩散模型的长寿债券定价研究[J].中国管理科学,2017,25(9):46-52.[36] 樊毅,张宁,王耀中.基于双因素Wang转换方法的长寿风险债券定价研究[J].财经理论与实践,2017,38(4):32-38.[37] 田玲,姜世杰,樊毅.基于风险立方方法的长寿风险债券定价研究[J].保险研究,2017,(7):3-12.[38] Brockett P L. Information theoretic approach to actuarial science:A unification and extension of relevant theory and applications[J]. Transactions of the Society of Actuaries, 1991, 43:73-135.[39] Kullback S, Leibler R A. On information and sufficiency[J]. The annals of mathematical statistics, 1951, 22(1):79-86.[40] Tsallis C. Generalized entropy-based criterion for consistent testing[J]. Physical Review E, 1998, 58(2):1442.[41] Rényi A. On measures of entropy and information[C]//Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:Contributions to the Theory of Statistics. The Regents of the University of California, 1961.[42] 柳向东,王星蕊.半马氏市道轮换利率期限结构模型——基于最小Tsallis熵鞅测度[J].系统工程理论与实践,2017,37(5):1136-1143.[43] Dolan C, Blanchet J, Iyengar G, et al. A model robust real options valuation methodology incorporating climate risk[J]. Resources Policy, 2018,57:81-87. |