[1] Lee S, Kim D. An optimal policy for a single-vendor single-buyer integrated production-distribution model with both deteriorating and defective items[J]. International Journal of Production Economics, 2014, 147(1):161-170. [2] 戢守峰, 万鹏, 孙琦,等. 库存共享和服务水平限制下三级分销网络侧向转运模型与算法[J].中国管理科学, 2016, 24(12):72-81. [3] Govindan K, Fattahi M, Keyvanshokooh E. Supply chain network design under uncertainty:A comprehensive review and future research directions[J]. European Journal of Operational Research, 2017, 263(1):108-141. [4] 郭传好, 陈芳, 单而芳. 短生命周期乳制品供应链网络成本与收益优化研究[J]. 中国管理科学, 2017, 25(2):87-97. [5] Simangunsong E, Hendry L C, Stevenson M. Supplychain uncertainty:A review and theoretical foundation for future research[J]. International Journal of Production Research, 2012, 50(16):4493-4523. [6] Avinadav T, Chernonog T, Perlman Y. Analysis of protection and pricing strategies for digital products under uncertain demand[J]. International Journal of Production Economics, 2014, 158:54-64. [7] Rodriguez M A, Vecchietti A R, Harjunkoski I, et al. Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I:MINLP and MILP models[J]. Computers & Chemical Engineering, 2014, 62(62):194-210. [8] Yang Guoqing, Liu Yankui, Yang Kai. Multi-objective biogeography-based optimization for supply chain network design under uncertainty[J]. Computers & Industrial Engineering, 2015, 85(C):145-156. [9] Pasandideh S H R, Niaki S T A, Asadi K. Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments:NSGA-Ⅱ and NRGA[J]. Information Sciences, 2015, 292(C):57-74. [10] 赵霞, 曹宝明, 窦建平. 需求和原料价格不确定下农产品供应链网络鲁棒优化设计[J]. 管理工程学报, 2017, 31(4):178-185. [11] Simangunsong E, Hendry L C, Stevenso M. Supplychain uncertainty:A review and theoretical foundation for future research[J]. International Journal of Production Research, 2012, 50(16):4493-4523. [12] Heckmann I, Comes T, Nickel S. A critical review on supply chain risk-Definition, measure and modeling[J]. Omega, 2015, 52(2):119-132. [13] Chiu C H, Choi T M. Supply chain risk analysis with mean-variance models:A technical review[J]. Annals of Operations Research,2016, 240(2):489-507. [14] Chiu C H, Choi T M, Hao G, et al. Innovative menu of contracts for coordinating a supply chain with multiple mean-variance retailers[J]. European Journal of Operational Research, 2015, 246(3):815-826. [15] Soleimani H, Govindan K. Reverse logistics network design and planning utilizing conditional value at risk[J]. European Journal of Operational Research, 2014, 237(2):487-497. [16] Xu Chunming, Zhao Daozhi. Optimal decisions for adoption of Item-Level RFID in a retail supply chain with inventory shrinkage under CVaR criterion[J]. Discrete Dynamics in Nature & Society, 2016, 2016(2):1-17. [17] Madadi A R, Kurz M E, Taaffe K M, et al. Supply network design:Risk-averse or risk-neutral?[J]. Computers & Industrial Engineering, 2015, 78:55-65. [18] Xu Minghui, Chen Frank Y. Tradeoff between expected reward and conditional value-at-risk criterion in newsvendor models[C]//IEEE International Conference on Industrial Engineering and Engineering Management. IEEE, 2007:1553-1557. [19] Xu Minghui, Li Jianbin. Optimal decisions when balancing expected profit and conditional value-at-risk in newsvendor models[J]. Journal of Systems Science & Complexity, 2010, 23(6):1054-1070. [20] Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions[J]. Journal of Banking & Finance, 2002, 26(7):1443-1471. [21] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2015, 29(1):1071-1074. [22] Karuppiah R, Martín M, Grossmann I E. A simple heuristic for reducing the number of scenarios in two-stage stochastic programming[J]. Computers & Chemical Engineering, 2010, 34(8):1246-1255. |