[1] 杜少甫,谢金贵,刘作仪. 医疗运作管理:新兴研究热点及其进展[J].管理科学学报,2013,16(8):1-19. [2] Aboueljinane L, Sahin E, Jemai Z. A review on simulation models applied to emergency medical service operations[J]. Computers & Industrial Engineering, 2013, 66(4):734-750. [3] Beraldi P, Bruni M E, Conforti D. Designing robust emergency medical service via stochastic programming[J]. European Journal of Operational Research, 2004, 158(1):183-193. [4] Toregas C, Swain R, ReVelle C, et al. The location of emergency service facilities[J]. Operations Research, 1971, 19:1363-1373. [5] Church R L, ReVelle C S. The maximum covering location problem[J]. Papers of the Regional Science Association, 1974, 32:101-118. [6] Gendreau M, Laporte G, Semet F. Solving an ambulance location model by tabu search[J]. Location Science, 1997, 5(2):75-88. [7] Liu Yi, Li Zhongzhi, Liu Jingxian, et al. A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability[J]. Transportation Research Part C, 2016, 69:120-133. [8] Dibene J C, Maldonado Y, Vera C. Optimizing the location of ambulances in Tijuana, Mexico[J]. Computers in Biology and Medicine, 2017, 80:107-113. [9] Liu Ming, Yang Dapeng, Hao Fengxia. Optimization for the locations of ambulances under two-stage life rescue in the emergency medical service:A case study in Shanghai,China[J]. Mathematical Problems in Engineering, 2017:1-14. [10] 张玲,陈涛,黄钧. 基于最小最大后悔值的应急救灾网络构建鲁棒优化模型与算法[J]. 中国管理科学,2014,22(7):131-139. [11] Torres N, Trujillo L, Maldonado Y. Modeling uncertainty for the double standard model using a fuzzy inference system[J]. Frontiers in Robotics and AI, 2018,5:31-39. [12] Aringhieri R, Bruni M E, Khodaparasti S. Emergency medical services and beyond:Addressing new challenges through a wide literature review[J]. Computers & Operations Research, 2017, 78(C):349-368. [13] Li Xueping, Zhao Zhaozhaoxia, Zhu Xiaoyan. Covering models and optimization techniques for emergency response facility location and planning:A review[J]. Mathematical Methods of Operations Research, 2011, 74(3):281-310. [14] Wei Ran. Coverage location models:Alternatives, approximation, and uncertainty[J]. International Regional Science Review, 2016, 39(1):48-76. [15] Altınel I·K, Durmaz E, Aras N. A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations[J]. European Journal of Operational Research, 2009, 198(3):790-799. [16] Beraldi P, Bruni M E. A probabilistic model applied to emergency service vehicle location[J]. European Journal of Operational Research, 2009, 196(1):323-331. [17] Degel D, Wiesche L, Rachuba S. Time-dependent ambulance allocation considering data-driven empirically required coverage[J]. Health care management science, 2015, 18(4):444-458. [18] Chen A Y, Lu T Y, Ma M H M. Demand forecast using data analytics for the preallocation of ambulances[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(4):1178-1187. [19] 樊博.基于空间聚类挖掘的城市应急救援机构选址研究[J].管理科学学报,2008,11(3):16-28. [20] Kottas A, Sansó B. Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis[J]. Journal of Statistical Planning and Inference, 2007, 137(10):3151-3163. [21] Ji Chunlin, Merl D, Kepler T B. Spatial mixture modelling for unobserved point processes:Examples in immunofluorescence histology[J]. Bayesian analysis (Online), 2009,4(2):297. [22] Zhou Zhengyi, Matteson D S, Woodard D B. A spatio-temporal point process model for ambulance demand[J]. Journal of the American Statistical Association, 2014, 110(509):6-15. [23] McLachlan G J, Peel D. Finite mixture models[M]. New York:John Wiley & Sons, 2000. [24] Bishop C M. Pattern recognition and machine learning[M]. Berlin:Springer, 2006. |