[1] Bichler M, Kalagnanam J. Configurable offers and winner determination in multi-attribute auctions[J]. European Journal of Operational Research, 2005, 160(2):380-394. [2] Kameshwaran S, Narahari Y, Rosa CH, et al. Multiattribute electronic procurement using goal programming[J]. European Journal of Operational Research, 2007, 179(2):518-536. [3] Cheng Chibin. Solving a sealed-bid reverse auction problem by multiple-criterion decision-making methods[J]. Computers and Mathematics with Applications, 2008, 56(12):3261-3274. [4] Ray A K, Jenamani M, Mohapatra P K J. An efficient reverse auction mechanism for limited supplier base[J]. Electronic Commerce Research and Applications, 2011, 10(2):170-182. [5] Ray A K, Jenamani M, Mohapatra P K J. Supplier behavior modeling and winner determination using parallel MDP[J]. Expert Systems with Applications, 2011, 38(5):4689-4697. [6] 王明喜, 谢海滨, 胡毅. 基于简单加权法的多属性采购拍卖模型[J]. 系统工程理论与实践, 2014, 34(11):2772-2782. [7] Pham L, Teich J, Wallenius H, et al. Multi-attribute online reverse auctions:Recent research trends[J]. European Journal of Operational Research, 2015, 242(1):1-9. [8] Talluri S, Narasimhan R,Viswanathan S. Information technologies for procurement decisions:A decision support system for multi-attribute e-reverse auctions[J]. International Journal of Production Research, 2007, 45(11):2615-2628. [9] 呼大永, 冯玉强, 唐振宇, 等. 基于自组织神经网络和DEA的采购拍卖获胜者确定问题模型[J]. 系统工程理论与实践, 2012, 32(2):398-404. [10] Huang Min, Qian Xiaohu, Fang Shu-Cherng, et al. Winner determination for risk aversion buyers in multi-attribute reverse auction[J]. Omega, 2016, (59):184-200. [11] 刘卫锋, 常娟, 杜迎雪.(语言)Heronian平均算子及其决策应用[J]. 中国管理科学, 2017, 25(7):174-183. [12] Angilella S, Corrente S, Greco S, et al. MUSA-INT:Multicriteria customer satisfaction analysis with interacting criteria[J]. Omega, 2014, 42(1):189-200. [13] Greco S, Mousseau V, Słowiński R. Robust ordinal regression for value functions handling interacting criteria[J]. European Journal of Operational Research, 2014, 239(3):711-730. [14] 陈岩, 李庭, 鲍博. 基于Choquet积分的指标关联模糊多目标指派问题[J]. 系统工程理论与实践, 2017, 37(8):2162-2170. [15] 杨洁, 李登峰. 指标相关且信息模糊的合作创新伙伴选择方法[J]. 运筹与管理, 2016, 25(5):53-58. [16] 赵树平, 梁昌勇, 罗大伟. 基于VIKOR和诱导广义直觉梯形模糊Choquet积分算子的多属性群决策方法[J]. 中国管理科学, 2016, 24(6):132-142. [17] 章玲, 周德群. 基于k-可加模糊测度的多属性决策分析[J]. 管理科学学报, 2008, 11(6):18-24. [18] 武建章, 张强. 基于2-可加模糊测度的多准则决策方法[J]. 系统工程理论与实践, 2010, 30(7):1229-1237. [19] 常志朋, 程龙生. 灰模糊积分关联度决策模型[J]. 中国管理科学, 2015, 23(11):105-111. [20] Teich J E, Wallenius H, Wallenius J, et al. Emerging multiple issue e-auctions[J]. European Journal of Operational Research, 2004, 159(1):1-16. [21] 于红岩, 刘仲英. 基于拍卖方偏好揭示的多属性网上拍卖模型[J]. 系统工程, 2008, 26(3):54-58. [22] Karakaya G, Köksalan M. An interactive approach for multi-attribute auctions[J]. Decision Support Systems, 2011, 51(2):299-306. [23] Yang Na, Liao Xiuwu, Huang Wayne Wei. Decision support for preference elicitation in multi-attribute electronic procurement auctions through an agent-based intermediary[J]. Decision Support Systems, 2014, (57):127-138. [24] 周正龙, 马本江, 胡凤英. 随机需求条件下的P2P网络借贷拍卖机制[J]. 中国管理科学, 2018, 26(5):21-30. [25] Bonetti A, Bortot S, Fedrizzi M, et al. Modelling group processes and effort estimation in project management using the Choquet integral:An MCDM approach[J]. Expert Systems with Applications, 2012, 39(18):13366-13375. [26] Grabisch M, Labreuche C. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[J]. Annals of Operations Research, 2010, 6(1):1-44. [27] Grabisch M. K-order additive discrete fuzzy measures and their representation[J]. Fuzzy Sets and Systems, 1997, 92(2):167-189. [28] Angilella S, Greco S, Matarazzo B. Non-additive robust ordinal regression:A multiple criteria decision model based on the Choquet integral[J]. European Journal of Operational Research, 2010, 201(1):277-288. |