[1] 宋明顺, 黄佳, 方兴华, 等. 基于正态分布的逐批抽样检验贝叶斯控制图控制限研究[J]. 数理统计与管理, 2017, 36(3):481-495. [2] Panagiotidou S, Nenes G. An economically designed, integrated quality and maintenance model using an adaptive Shewhart chart[J]. Reliability Engineering and System Safety, 2009, 94(3):732-741. [3] Page E S. Continuous inspection scheme[J]. Biometrika, 1954, 41(1):100-104. [4] Roberts S W. Control chart tests based on geometric moving averages[J]. Technometrics, 1959, 1:239-250. [5] Tran K P, Castagliola P, Celano G. Monitoring the ratio of population means of a bivariate normal distribution using CUSUM type control charts[J]. Statistical Papers, 2018, 59:387-413. [6] Park C, Huang J, Ding Y. A computable plug-in estimator of minimum volume sets for novelty detection[J]. Operations Research, 2010, 58(5):1469-1480. [7] Das D, Zhou S. Statistical process monitoring based on maximum entropy density approximation and level set principle[J]. IIE Transactions, 2015, 47(2):215-229. [8] Fang Xinghua, Song Mingshun, Chen Yizeng. Statistical process control for unimodal distribution based on maximum entropy distribution approximation[J]. Entropy. 2017, 19(8):406-417. [9] 王兆军, 巩震, 邹长亮. ARL计算方法综述[J]. 数理统计与管理, 2011, 30(3):467-495. [10] Sanusi R A, Abujiya M R, Riaz M, et al. Combined Shewhart CUSUM charts using auxiliary variable[J]. Computers& Industrial Engineering, 2017, 105(1):329-337. [11] Shu Lianjie, Jiang Wei, Wu Zhang. Adaptive CUSUM procedures with markovian meane stimation[J]. Computational Statistics and Data Analysis, 2008, 52(9):4395-4409. [12] Vargas V D C C D, Lopes L F D, Souza A M. Comparative study of the performance of the CUSUM and EWMA control charts[J]. Computers & Industrial Engineering, 2004, 46(4):707-724. [13] Chen Xiaowei, Dai Wei. Maximum entropy principle for uncertain variables[J]. International Journal of Fuzzy Systems, 2011, 13(3):232-236. [14] Barzdajn B. Maximum entropy distribution under moments and quantiles constraints[J]. Measurement, 2014, 57:102-107. [15] Alwan L C, Ebrahimi N, Soofi E S. Information theoretic framework for process control[J]. European Journal of Operational Research, 1998, 111(3):526-542. [16] Chiang J Y, Lio Y L, Ng H K T, et al. Robust control charts for percentiles based on location scale family of distributions[J]. Quality and Reliability Engineering International, 2018, 107(1):1-20. [17] Shannon C E. A mathematical theory of communication[J]. The Bell System Technology Journal, 1948, 27:379-423, 623-656. [18] Jaynes E T. Information theory and statisticalmechanics[J]. Physical Review, 1957, 106:620-620. [19] Bierig C, Chernov A. Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method[J]. Journal of Computational Physics, 2016, 314:661-681. [20] Wu Zhang, Yang Mei, Jiang Wei, et al. Optimization designs of the combined Shewhart CUSUM control charts[J]. Computational Statistics & Data Analysis, 2008, 53(2):496-506. [21] 宋平凡, 谭常春, 祁毓. 基于相对熵方法的长寿债券定价研究[J]. 中国管理科学, 2019, 27(5):32-41. [22] 方兴华, 宋明顺, 鲁伟. 测量不确定度信息约束下的最大熵分布研究[J]. 系统科学与数学, 2017, 37(12):2337-2346. [23] Cadre B. Kernel estimation of density level sets[J].Journal of Multivariate Analysis, 2006, 94(4):999-1023. [24] Rosenblatt. Remarks on some nonparametric estimates of a density function[J]. Annals of Mathematical Statistics, 1956, 27(6):832-837. [25] Hyndman R J. Computing and graphing highest density regions[J]. American Statistician, 1996, 50(2):120-126. [26] Shu Lianjie, Jiang Wei. A Markov chain model for the adaptive CUSUM control chart[J]. Journal of Quality Technology, 2006, 38(2):135-147. [27] Sparks, Ross S. CUSUM charts for signalling varying location shifts[J]. Journal of Quality Technology, 2000, 32(2):157-171. [28] Huang W, Shu L, Woodall W H, et al. CUSUM procedures with probability control limits for monitoring processes with variable sample sizes[J]. IIE Transactions, 2016, 48(8):759-771. [29] Wardell D G, Plante M R D. Run length distributions of special cause control charts for correlated processes[J]. Technometrics, 1994, 36(1):3-17. [30] Brook D, Evans D A. An approach to the probability distribution of CUSUM run length[J]. Biometrika, 1972, 59(3):539-549. [31] Lucas J M. Combined Shewhart CUSUM quality control schemes[J]. Journal of Quality Technology, 1982, 14(2):51-59. [32] 王兆军, 邹长亮, 李忠华. 统计质量控制图理论与方法[M]. 北京:科学出版社, 2013. [33] José A M, Eloísa D, Gudelia F P. Estimation of the reliability parameter for three-parameter weibull models[J]. Applied Mathematical Modelling, 2019, 67(3):612-633. [34] Awad M. Economic allocation of reliability growth testing using weibull distributions[J]. Reliability Engineering and System Safety, 2016, 152:273-280. [35] Zhang Lizhen, Xu Delun. A new maximum entropy probability function for the surface elevation of nonlinear sea waves[J]. China Ocean Engineering, 2005, 19(4):637-646. |