[1] Taylor G W. Composable, distributed-state models for high-dimensional time series[M]. University of Toronto, 2009. [2] Trafalis T B, Ince H. Support vector machine for regression and applications to financial forecasting[C]//Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, IEEE, 2000:348-353. [3] 徐国祥,杨振建. PCA-GA-SVM模型的构建及应用研究——沪深300指数预测精度实证分析[J]. 数量经济技术经济研究,2011,(2):135-147. [4] Wang Jianzhou, Wang Jujie, Zhang Zhe, et al. Forecasting stock indices with back propagation neural network[J]. Expert Systems with Applications, 2011, 38(11):14346-14355. [5] 潘和平,张承钊.FEPA-金融时间序列自适应组合预测模型[J]. 中国管理科学,2018,26(6):26-38. [6] 张贵生,张信东.基于近邻互信息的SVM-GARCH股票价格预测模型研究[J].中国管理科学,2016,24(9):11-20. [7] 于志军,杨善林,章政,等.基于误差校正的灰色神经网络股票收益率预测[J].中国管理科学,2015,23(12):20-26. [8] Ahmed N K, Atiya A F, Gayar N E, et al. An empirical comparison of machine learning models for time series forecasting[J]. Econometric Reviews, 2010, 29(5-6):594-621. [9] Karathanasopoulos A S, Theofilatos K A, Leloudas P M, et al. Modeling the ase 20 greek index using artificial neural nerworks combined with genetic algorithms[C]. International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, 2010:428-435. [10] Bengio Y, LeCun Y. Scaling learning algorithms towards AI[J]. Large-scale kernel machines, 2007, 34(5):1-41. [11] 孙志军,薛磊,许阳明,等. 深度学习研究综述[J]. 计算机应用研究,2012,29(8):2806-2810. [12] Heaton J B, Polson N G, Witte J H. Deep learning in finance[J]. arXiv:1602.06561, 2016. [13] Hsieh T J, Hsiao H F, Yeh W C. Forecasting stock markets using wavelet transforms and recurrent neural networks:An integrated system based on artificial bee colony algorithm[J]. Applied soft computing, 2011, 11(2):2510-2525. [14] Hochreiter S, Bengio Y, Frasconi P, et al. Gradient flow in recurrent nets:The difficulty of learning long-term dependencies[M]//Kolen J F, Kremer S C. A Field guide to dynamical recurrent networks, Wiley-IEEE Press, 2001:237-243. [15] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Advances in neural information processing systems, Montreal Canada, Curran Associate, 2014:3104-3112. [16] Bengio Y, Courville A C, Vincent P. Unsupervised feature learning and deep learning:A review and new perspectives[J]. arXiv:1206.5538, 2012. [17] Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42:11-24. [18] 庞贞燕,刘磊. 期货市场能够稳定农产品价格波动吗——基于离散小波变换和GARCH模型的实证研究[J]. 金融研究,2013,(11):126-139. [19] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. MA, USA:MIT Press, 2016. [20] 刘向丽,王旭朋.基于小波分析的股指期货高频预测研究[J].系统工程理论与实践,2015,35(6):1425-1432. [21] 惠晓峰,柳鸿生,胡伟,何丹青. 基于时间序列GARCH模型的人民币汇率预测[J]. 金融研究,2003,(5):99-105. |