主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

Chinese Journal of Management Science ›› 2020, Vol. 28 ›› Issue (7): 89-101.doi: 10.16381/j.cnki.issn1003-207x.2020.07.009

• Articles • Previous Articles     Next Articles

Robust Decision to Reverse Factoring Supply Chain with Demand Disturbance

CHEN Zhong-jie1, YU Hui2   

  1. 1. School of Accounting, Chongqing University of Technology and Industry, Chongqing 400067, China;
    2. School of Economics and Business Administration, Chongqing University, Chongqing 400030, China
  • Received:2017-12-31 Revised:2019-06-26 Online:2020-07-20 Published:2020-08-04

Abstract: Reverse factoring solves the seller's financing difficulty by using the good reputation of the buyer. In practice, core enterprises such as Xiaomi and Haier carry out the strategic cooperation on reverse factoring with financial institutions to alleviate supplier's financial difficulties and reduce the risk of supply disruptions.Previous studies have generally explored the impact of financial-oriented reverse factoring on supply-side operations. However, due to the transformation of commercial credit into bank credit, core enterprises are facing credit risk but not getting financing,does the credit risk affect the decision-making of core enterprises? In addition, demand disturbances often occur in reality, and demand uncertainty will inevitably lead to operational risk of supply chain and affect the repayment ability of reverse factoring, how should supply chain make decisions?
The decision-making and operation rules of supply chain with reverse factoring are studied when only the mean and variance are known. A two-level supply chain consisting of a supplier and a retailers is constructed. A game model of supply chain based on wholesale price contract is established by using minimax method. Decision-making goals of the retailer and the supplier are $\begin{array}{*{20}{c}} {\mathop {\max }\limits_{q \ge 0} }&{\mathop {\min }\limits_{F \in {\Gamma _+ }\left({\mu,{\sigma ^2}} \right)} }&{E\left[{{\pi _r}\left({q,D} \right)} \right]} \end{array}$ and maxE[πs(w)].By solving the Stackelberg game model inversely, the quantitative decision of reverse factoring in supply chain is proposed:the optimum order quantity is ${q^*}=\mu + \frac{\sigma }{2} \cdot \frac{{P-W}}{{\sqrt {PW} }}$, and the optimal wholesale price w* meets with $\frac{{G{{\left({p-s} \right)}^2}}}{{{{\left({PW} \right)}^{1.5}}}}-\frac{{2\left({P-W} \right)}}{{{{\left({PW} \right)}^{0.5}}}}=\frac{{4\mu }}{\sigma }$. there $P=p-\left({w + \frac{{cl}}{A}} \right)$ (l is the credit risk loss coefficient),$W=\left({w + cl/A} \right)-s,G=w-c\left({1 + r} \right)$,they three represent the retailer's unit profit and unit unsalable loss, as well as the supplier's unit profit. The numerical expressions mean that the optimal wholesale price is the result of the trade-off between suppliers and retailers,and the optimal order quantity fluctuates in the mean value, which is affected by the relationship between retailers' profitability and unsalable loss. Combined with numerical simulation, the research shows that robust decision-making can provide effective and robust decision-making for missing information supply chain in reverse factoring; and the reverse factoring based on the supply chain relationship strengthens the supply chain cooperation; once the interest rate is determined, the profit of retailer will not be reduced because of the loss of the supplier's reputation, which eliminates the buyer's concerns on risk-taking of financing. Thus the research enriches the theory of interaction between finance and operation.

Key words: reverse factoring, demand disturbances, robust decision making, supply chain cooperation

CLC Number: