[1] Zhao Xiabing, Du Ding.Forecasting carbon dioxide emissions[J].Journal of Environmental Management,2015,160:39-44. [2] Meng Ming, Niu Dongxiao. Modeling CO2 emissionsfrom fossil fuel combustion using the logistic equation[J].Energy,2011,36(5):3355-3359. [3] 杜强, 陈乔, 杨锐. 基于Logistic模型的中国各省碳排放预测[J].长江流域资源与环境2013,22(2):143-151. [4] Suarez R P, Menendez A J L.Growing green? Forecasting CO2 emissions with Environmental Kuznets Curves and Logistic Growth Models[J].Environmental Science & Policy,2015,54:428-437. [5] 王宪恩, 王泳璇, 段海燕. 区域能源消费碳排放峰值预测及可控性研究[J].中国人口资源与环境, 2014,24(8):9-16. [6] 黄蕊,王铮,丁冠群,等. 基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016,35(4):781-789. [7] 刘广为,赵涛,米国芳.中国碳排放强度预测与煤炭能源比重检验分析.资源科学,2012,34(4):677-687. [8] 赵息, 齐建民, 刘广为. 基于离散二阶差分算法的中国碳排放预测[J]. 干旱区资源与环境, 2013, 27(1):63-69. [9] Pao H T, Fu H C, Tseng C L. Forecastingof CO2 emissions, energy consumption andeconomic growth in China using an improved grey model[J]. Energy,2012,40:400-409. [10] Wu Lifeng, Liu Sifeng, Liu Dinglin, et al. Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model[J]. Energy, 2015,79:489-495. [11] Ding Song, Dang Yaoguo, Li Xuemei, et al. Forecasting Chinese CO2, emissions from fuel combustion using a novel grey multivariable model[J].Journal of Cleaner Production, 2017,162:1527-1538. [12] Xu Ning, Ding Song, Gong Yande, et al. Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model[J]. Energy,2019,175:218-227. [13] 张国兴,张振华,刘鹏,等.我国碳排放增长率的运行机理及预测[J].中国管理科学, 2015,23(12):86-93. [14] Mladenović I, Sokolov-Mladenović S, Milovančević M, et al. Management and estimation of thermal comfort, carbon dioxide emission and economic growth by support vector machine[J]. Renewable & Sustainable Energy Reviews, 2016, 64:466-476. [15] Sun Wen, Liu Mohan. Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China[J].Journal of Cleaner Production, 2016,122:144-153. [16] Sun Wei, Wang Caifei, Zhang Chongchong. Factor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimization[J]. Journal of Cleaner Production,2017, 162:1095-1101. [17] Fang Debin, Zhang Xiaoling, Yu Qian, et al. A novel method for carbon dioxide emission forecasting based on improved Gaussian processes regression[J]. Journal of Cleaner Production, 2018, 173:143-150. [18] Huang Yuansheng, Shen Lei, Liu Hui. Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China[J]. Journal of Cleaner Production,2019,209:415-423. [19] 刘思峰,党耀国,方志耕,等.灰色系统理论及应用(第五版)[M].北京:科学出版社,2010. [20] 曾波,尹小勇,孟伟. 实用灰色预测建模方法及其MATLAB程序实现[M].北京:科学出版社,2018. [21] Zhou Qingguo, Chen Huaming,Zhao Hong, et al. A local field correlated and monte carlo based shallow neural network model for nonlinear time series prediction[J]. EAI Endorsed Transactions on Scalable Information Systems, 2016, 3(8):e5-1-e5-7. [22] Yong Binbin, Shen Jun, Shen Zebang, et al. GVM based intuitive simulation web application for collision detection[J].Neurocomputing,2018,279:63-73. [23] Yong Binbin, Huang Liang,Li Fucun,et al.A research of monte carlo optimized neural network for electricity load forecast[J].The Journal of Supercomputing,2019,1-14. [24] Zhao Hong. General vector machine, 2016. ArXiv e-prints, Arxiv:1602.03950. [25] Eggleston H S, Buendia L, Miwa K, et al. IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL].[2018-07-16].https://www.ipccnggip.iges.or.jp/public/2006gl/index. [26] Zhang Ming,Mu Hailin,Ning Yadong, et al. Decomposition of energy related CO2 emission over 1991-2006 in China[J].Ecological Economics, 2009,68(7):2122-2128. [27] 涂正革.中国的碳减排路径与战略选择——基于八大行业部门碳排放量的指数分解分析[J].中国社会科学, 2012,(3):78-94. [28] 陈庆能.中国行业碳排放的核算和分解:基于投入产出结构分解分析视角[D].杭州:浙江大学,2018. |