[1] 张大斌,周志刚,许职,等.基于差分进化自动聚类的信用风险评价模型研究[J].中国管理科学,2015,23(4):39-45. [2] Malekipirbazari M, Aksakalli V. Risk assessment in social lending via random forests[J]. Expert Systems with Applications, 2015, 42(10):4621-4631. [3] 王春峰, 万海晖, 张维. 基于神经网络技术的商业银行信用风险评估[J]. 系统工程理论与实践, 1999, 19(9):24-33. [4] 衣柏衡, 朱建军, 李杰. 基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J]. 中国管理科学, 2016, 24(3):24-30. [5] Yu Lean, Yang Zebin, Tang Ling. A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment[J]. Flexible Services & Manufacturing Journal, 2016, 28(4):1-17. [6] Baesens B, Setiono R, Mues C, et al. Using neural network rule extraction and decision tables for credit-risk evaluation[J]. Management Science, 2003, 49(3):312-329. [7] Martens D, Baesens B, Gestel T V, et al. Comprehensible credit scoring models using rule extraction from support vector machines[J]. European Journal of Operational Research, 2007, 183(3):1466-1476. [8] Ribeiro M T, Singh S, Guestrin C. "Why should I trust you?":Explaining the predictions of any classifier[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016:1135-1144. [9] Riccardo G, Anna M, Salvatore R, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2018, 51(5):1-42. [10] Capon N. Credit scoring systems:A critical analysis[J]. Journal of Marketing, 1982, 46(2):82-91. [11] Craven M, Shavlik J W. Extracting treestructured representations of trained networks[C]//Advances in neural information processing systems. 1996:24-30. [12] Craven M W. Extracting comprehensible models from trained neural networks[D].Wisconsin:University of Wisconsin-Madison Department of Computer Sciences, 1996. [13] 侯文坤, 张劲峰. 基于决策树的神经网络规则抽取方法[J]. 中山大学学报(自然科学版), 2000, 39(4):27-30. [14] Schmitz G P, Aldrich C, Gouws F S, et al. ANN-DT:An algorithm for extraction of decision trees from artificial neural networks[J]. IEEE Transactions on Neural Networks, 1999, 10(6):1392-1401. [15] Wu M, Hughes M C, Parbhoo S, et al. Beyond sparsity:Tree regularization of deep models for interpretability[C]//the Association for the Advance of Artificial Intelligence, 2018:1670-1678. [16] Huysmans J, Baesens B, Vanthienen J. Using rule extraction to improve the comprehensi-bility of predictive models[J]. Social Science Electronic Publishing, 2007:1-55. [17] 陆爱国,王珏,刘红卫.基于改进的SVM学习算法及其在信用评分中的应用[J].系统工程理论与实践,2012,32(3):515-521. [18] 于晓虹, 楼文高. 基于随机森林的P2P网贷信用风险评价、预警与实证研究[J]. 金融理论与实践, 2016(2):53-58. [19] 夏江南, 王杜娟, 王延章,等. 基于结构自适应模糊神经网络的前列腺癌诊断方法[J]. 系统工程理论与实践, 2018, 38(5):1331-1342. [20] 苏博, 刘鲁, 杨方廷. 基于灰色关联分析的神经网络模型[J]. 系统工程理论与实践, 2008, 28(9):98-104. [21] Deng H, Runger G, Tuv E, et al. CBC:An associative classifier with a small number of rules[J]. Decision Support Systems, 2014, 59:163-170. [22] Gras R, Mashayekhi M. Rule extraction from decision trees ensembles:New algorithms based on heuristic search and sparse group lasso methods[J]. International Journal of Information Technology & Decision Making, 2017, 16(06):1707-1727. [23] Liu Sheng, Patel R Y, Daga P R, et al. Combined rule extraction and feature elimination in supervised classification[J]. IEEE Transactions on Nanobioscience, 2012, 11(3):228-236. [24] Ye Xin, Liu Sihao, Yin Yanli, et al. User-oriented many-objective cloud workflow scheduling based on an improved knee point driven evolutionary algorithm[J]. Knowledge-Based Systems, 2017, 135:113-124. |