[1] Kumbhakar S C. Estimation of input-specific technical and allocative inefficiency in stochastic frontier models[J]. Oxford Economic Papers, 1988, 40(3):535-549. [2] Hanna R, Mullainathan S, Schwartzstein J. Learning through noticing:Theory and evidence from a field experiment[J]. The Quarterly Journal of Economics, 2014, 129(3):1311-1353. [3] Aparicio J, Kapelko M, Mahlberg B, et al. Measuring input-specific productivity change based on the principle of least action[J]. Journal of Productivity Analysis, 2017, 47(1):17-31. [4] Chambers R G, Chung Y, Färe R. Profit, directional distance functions, and nerlovian efficiency[J]. Journal of Optimization Theory and Applications, 1998, 98:351-364. [5] Färe R, Grosskopf S. Theory and application of directional distance functions[J]. Journal of Productivity Analysis, 2000, 13:93-103. [6] Atkinson S E,Tsionas M G. Directional distance functions:Optimal endogenous directions[J]. Journal of Econometrics, 2016, 190:301-314. [7] Färe R, Grosskopf S, Whittaker G. Directional output distance functions:Endogenous directions based on exogenous normalization constraints. Journal of Productivity Analysis, 2013, 40:267-269. [8] Petersen N C. Directional distance functions in dea with optimal endogenous directions[J]. Operations Research, 2018, 66:1068-1085. [9] Petersen N C. Units of measurement and directional distance functions with optimal endogenous directions in data envelopment analysis[J]. European Journal of Operational Research, 2000, 282:712-728. [10] Thanassoulis E, Dyson R G. Estimating preferred target input-output levels using data envelopment analysis[J]. European Journal of Operational Research, 1992, 56:80-97. [11] Zhou P, PohK L, Ang B W. A non-radial dea approach to measuring environmental performance[J]. European Journal of Operational Research,2017, 178:1-9. [12] 冯晨鹏, 王慧玲, 毕功兵.存在多种非期望产出的非径向零和收益DEA模型我国区域环境效率实证研究[J].中国管理科学, 2017, 25(10):42-51. Feng Chenpeng, Wang Huiling, Bi Gongbing. Non-radial ZSG-DEA model with multiple undesirable outputs an empirical study for regional environmental efficiencies in China[J]. Chinese Journal of Management Science, 2017, 25(10):42-51. [13] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130:498-509. [14] Tone K, Tsutsui M. Network dea:A slacks-based measure approach[J]. European Journal of Operational Research, 2009, 197:243-252. [15] 李根, 刘家国, 李天琦. 考虑非期望产出的制造业能源生态效率地区差异研究——基于SBM和Tobit模型的两阶段分析[J].中国管理科学, 2019, 27(11):76-87. Li Gen, Liu Jiaguo, Li Tianqi. Regional differences of energy eco-efficiency in manufacturing industry under consideration of undesirable outputs based on the SBM-tobit two-stage model[J]. Chinese Journal of Management Science, 2019, 27(11):76-87. [16] 夏琼, 杨峰, 吴华清. "三重底线"下中国商业银行经营效率及其影响因素分析[J].中国管理科学, 2019, 27(8):26-36. Xia Qiong, Yang Feng, Wu Huaqing. The operational efficiency and analysis of influencing factors of chinese commercial bank:Perspective of "Triple Bottom Line"[J]. Chinese Journal of Management Science, 2019, 27(8):27-36. [17] 刘华军, 孙淑惠,李超. 环境约束下中国化肥利用效率的空间差异及分布动态演进[J].农业经济问题, 2019, 8:65-75. Liu Huajun, Sun Shuhui, Li Chao. Regional difference and dynamic evolution of fertilizer use efficiency in China under environmental constraints[J]. Issues in Agricultural Economy, 2019, 8:65-75. [18] Tone K. A hybrid measure of efficiency in DEA[R].Working Paper, GRIPS Research Report Series, 2004. [19] 孟庆春, 黄伟东, 戎晓霞.灰霾环境下能源效率测算与节能减排潜力分析-基于多非期望产出的NH-DEA模型[J].中国管理科学, 2016, 24(8):53-61. Meng Qingchun, Huang Weidong, Rong Xiaoxia. Energy efficiency calculation and analysis on potentials of energy conservation and emission reduction under haze environment-based on the NH-DEA model of multiple undesirable output[J]. Chinese Journal of Management Science, 2016, 24(8):53-61. [20] 马璐,高李昊.带负值的Hybrid DEA模型研究及其应用[J].中国管理科学, 2016, 24(3):149-158. Ma Lu, Gao Lihao. A non-oriented measure for hybrid-DEA model with negative data[J]. Chinese Journal of Management Science, 2016, 24(3):149-158. [21] Kumbhakar S C, Lai H. Maximum likelihood estimation of the revenue function system with output-specific technical efficiency[J]. Economics Letters, 2016, 138:42-45. [22] Tsionas M G. The profit function system with output-and input-specific technical efficiency[J]. Economics Letters, 2017, 151:111-114. [23] Jondrow J, Lovell C A K, Materov I S, et al. On the estimation of technical inefficiency in the stochastic frontier production function model[J]. Journal of Econometrics, 1982, 19(2):233-238. [24] Färe R, Primont D. Multi-output production and duality:theory and applications[M]. New York:Springer Science & Business Media, 1995. [25] Tsionas E, Kumbhakar S C. Firm heterogeneity, persistent and transient technical efficiency:A generalized true random-effects model[J]. Journal of Applied Econometrics, 2014, 29(1):110-132. [26] Roberts G, Gelman A, Gilks W. Weak convergence and optimal scaling of random walk metropolis algorithms[J]. The Annals of Applied Probability, 1997, 7(1):110-120. [27] Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments[M]//Berger J O, Bernado J M, Dawid, A P, et al. Bayesian Statistics 4. Oxford:Oxford University Press, 1992:169-193. [28] 姚洋. 中国私营部门的发展和可持续性,2006[EB/OL]. (2017-06-07)[2018-01-12]. http://dx.doi.org/10.18170/DVN/IOWKNX. Yao Yang. Development and sustainability of private sector in China, 2016[EB/OL]. (2017-06-07)[2018-01-12]. http://dx.doi.org/10.18170/DVN/IOWKNX. [29] Klein B, Crawford R G, Alchian A A. Vertical integration, appropriable rents, and the competitive contracting process[J]. The journal of Law and Economics, 1978, 21(2):297-326. [30] Alchian A A, Demsetz H. Production, information costs, and economic organization[J]. The American economic review, 1972, 62(5):777-795. [31] Gibbons R, Roberts J. 2013. Economic theories of incentives in organizations[M]//Gibbons R, Roberts J. The handbook of organizational economics. Princeton:Princeton University Press, 2013:56-99. [32] Leibenstein H. Allocative efficiency vs. "X-efficiency"[J]. The American Economic Review, 1966, 56(3):392-415. |