[1] Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 7:77-91. [2] Konno H, Yamazaki H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market[J]. Management Science, 1991,37(5):519-531. [3] Speranza M G. Linear programming models for portfolio optimization[J]. The Journal of Finance, 1993,14:107-123. [4] Feinstein C D, Thapa M N. Notes:A reformation of a mean-absolute deviation portfolio optimization[J]. Management Science, 1993, 39:1552-1558. [5] Alexandre G, Baptisa A. Economic implications of using mean-VaR model for portfolio selection comparison with mean-variance analysis[J]. Journal of Economic Dynamic and Control, 2002, 26:115-126. [6] Li D, Ng W L. Optimal dynamic portfolio selection:multiperiod mean-variance formulation[J]. Mathematical Finance, 2000, 10(3):387-406. [7] Bodnar T,Parolya N, Schmid W. A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function[J]. Annals of Operations Research, 2015, 229(1):121-158. [8] Gao Jianjun, Li Duan, Cui Xiangyu, et al. Time cardinality constrained mean-variance dynamic portfolio selection and market timing:A stochastic control approach[J]. Automatica, 2015, 54:91-99. [9] 周宗宝, 任甜甜, 肖和录,等. 基于相对财富效用的多阶段投资组合博弈模型[J]. 中国管理科学,2019,27(1):34-43. Zhou Zhongbao, Ren Tiantian, Xiao Helu, et al. Multi-period portfolio game model based on relative wealth utility[J]. Chinese Journal of Management Science, 2019, 27(1):34-43. [10] Yu M, Takahashi S, Inoue H, et al. Dynamic portfolio optimization with risk control for absolute deviation model[J]. European Journal of Operational Research, 2010, 201(2):349-364. [11] Yan Wei, Li Shurong. A class of multi-period semi-variance portfolio selection with a four-factor futures price model[J]. Journal of Applied Mathematics and Computing, 2009, 29:19-34. [12] Yan Wei, Miao Rong, Li Shurong. Multi-period semi-variance portfolio selection:Model and numerical solution[J]. Applied Mathematics and Computation, 2007, 194:128-134. [13] 张鹏,张卫国,张逸菲. 具有最小交易量限制的均值-半方差多阶段投资组合优化[J].中国管理科学,2016,24(7):11-17. Zhang Peng, Zhang Weiguo, Zhang Yifei. Multi-period mean-semivariance portfolio selection with minimum transaction lots constraints[J]. Chinese Journal of Management Science, 2016, 24(7):11-17. [14] 张鹏.多阶段均值-平均绝对偏差投资组合的离散近似迭代法研究[J].系统管理学报,2010,3:266-271. Zhang Peng. Discrete approximate iteration method on the mean-absolute deviation multiperiod portfolio selection and the empirical research[J]. Journal of Systems & Management, 2010, 19(2):266-271. [15] Zhang Peng, Zhang Weiguo, Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints[J]. Fuzzy Sets and Systems, 2014, 255:74-91. [16] 张鹏.连续型凸动态规划的新算法研究[J]. 系统科学与数学,2011,31(8):943-951. Zhang Peng. The discrete approximate iteration method on the continuing convex dynamic programming[J]. Journal of Systems Science and Complexity, 2011, 31(8):943-951. [17] Heidergott B, Olsder G J, der Woude J V. Max plus at work-modeling and analysis of synchronized systems:A course on max-plus algebra and its applications[M].Princeton:Princeton University Press, 2006. |