[1] 刘映琳,刘永辉,鞠卓.国际原油价格波动对中国商品期货的影响——基于多重相关性结构断点的分析[J].中国管理科学,2019,27(2):31-40. Liu Yinglin, Liu Yonghui, Ju Zhuo. The impact of international crude oil price fluctuation on chinese commodity futures——Based on the correlation structure breakpoint model[J]. Chinese Journal of Management Science, 2019, 27(2):31-40. [2] Morana C.A semiparametric approach to short-term oil price forecasting[J].Energy Economics,2001,23(3):325-338. [3] Cheong C W.Modeling and forecasting crude oil markets using ARCH-type models[J].Energy Policy,2009,37(6):2346-2355. [4] Mohammadi H,Su L.International evidence on crude oil price dynamics:Applications of ARIMA-GARCH models[J].Energy Economics,2010,32(5):1001-1008. [5] Salisu A A,Fasanya I O.Modelling oil price volatility with structural breaks[J].Energy Policy,2013,52:554-562. [6] 王金丽. 考虑国际原油市场复杂特征的预测建模研究[D]. 长沙:湖南大学, 2019. Wang Jinli. Study on the forecast modeling of international crude oil market considering its complex characteristics[D]. Changsha:Hunan University, 2019. [7] Engle R F.Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J].Econometrics,1982,50(4):987-1007. [8] Bollerslev T.Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics,1986,31(3):307-327. [9] Politis N D.A heavy-tailed distribution for arch residuals with application to volatility prediction[J].Annals of Economics and Finance,2004,5(2):283-298. [10] Pan Jiazhu,Wang Hui,Tong Howell.Estimation and tests for power-transformed and threshold GARCH models[J].Journal of Econometrics,2008,142(1):352-378. [11] Nelson D B.Conditional heteroskedasticity in asset returns:A new approach[J].Econometrica,1991,59(2):347-370. [12] Hung J C,Lee M C,Liu H C.Estimation of value-at-risk for energy commodities via fat-tailed GARCH models[J].Energy Economics,2008,30(3):1173-1191. [13] Giot P,Laurent S.Market risk in commodity markets:A VaR approach[J].Energy Economics,2003,25(5):435-457. [14] Zhang Yuejun,Zhang Lu.Interpreting the crude oil price movements:Evidence from the Markov regime switching model[J].Applied Energy,2015,143(1):96-109. [15] 柴建,卢全莹,周友洪,等.国际原油价格拐点分析及统计推断[J].中国管理科学,2017,25(5):33-41. Chai Jian, Lu Quanying, Zhou Youhong, et al. Analysis and statistical inference of crude oil price change points[J]. Chinese Journal of Management Science, 2017, 25(5):33-41. [16] 龚旭,林伯强.跳跃风险、结构突变与原油期货价格波动预测[J].中国管理科学,2018, 26(11):11-21. Gong Xu, Lin Boqiang. Jump risk, structural breaks and forecasting crude oil futures volatility[J]. Chinese Journal of Management Science. 2018, 26(11):11-21. [17] Ewing B T,Malik F.Modelling asymmetric volatility in oil prices under structural breaks[J].Energy Economics,2017,63:227-233. [18] Sanzo S D.A Markov switching long memory model of crude oil price return volatility[J].Energy Economics,2018,74:351-359. [19] Zhang Yuejun,Yao Ting,He Lingyun,et al.Volatility forecasting of crude oil market:Can the regime switching GARCH model beat the single-regime GARCH models?[J]. International Review of Economics and Finance,2019,59:302-317. [20] Cont R. Empirical properties of asset returns:stylized facts and statistical issues[J].Quantitative Finance,2001,1(2):223-236. [21] 黄海南,钟伟.GARCH类模型波动率预测评价[J].中国管理科学,2007,15(6):13-19. Huang Hainan, Zhong Wei. Evaluation on volatility forecasting performance of GARCH-type models[J]. Chinese Journal of Management Science. 2007, 15(6):13-19. [22] Baillie R T.Long memory processes and fractional integration in econometrics[J].Journal of Econometrics,1996,73(1):5-59. [23] Tse Y K.The conditional heteroscedasticity of the yen-dollar exchange rate[J].Journal of Applied Econometrics,1998,13(1):49-55. [24] Huang Zhuo,Liu Hao,Wang Tianyi.Modeling long memory volatility using realized measures of volatility:A realized HAR GARCH model[J].Economic Modelling,2016,52:812-821. [25] Kang S H,Kang S M,Yoon S M.Forecasting volatility of crude oil markets[J].Energy Economics,2009,31(1):119-125. [26] Zhao Lutao,Liu Kun,Duan Xinlei,et al.Oil price risk evaluation using a novel hybrid model based on time-varying long memory[J].Energy Economics,2019,81:70-78. [27] Diebold F X,Inoue A.Long memory property of stock market returns and a new model[J].Journal of Econometrics,2001,105(2):131-159. [28] Baillie R T,Morana C.Modelling long memory and structural breaks in conditional variances:an adaptive FIGARCH approach[J].Journal of Economic Dynamics and Control,2009,33(8):1577-1592. [29] Granger C W J,Hyung N.Occasional structural breaks and long memory[J].Annals of Economics & Finance,2013,14:721-746. [30] Granger C W J,Hyung N.Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns[J].Journal of Empirical Finance,2004,11:399-421. [31] Arouri M,Lahiani A,Lévy A.Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models[J].Energy Economics,2012,34(1):283-293.. [32] Sanzo S D.A Markov switching long memory model of crude oil price return volatility[J]. Energy Economics,2018,74:351-359. [33] Klein T,Walther T.Oil price volatility forecast with mixture memory GARCH[J].Energy Economics,2016,41:46-58. [34] Li Muyi,Li Waikeung,Li Guodong.On mixture memory GARCH models[J].Journal of Time Series Analysis,2013,34(6):606-624. [35] Fattouh B.The dynamics of crude oil price differentials[J].Energy Economics,2010,32(2):334-342. [36] Inclan C,Tiao G C.Use of cumulative sums of squares for retrospective detection of changes in variance[J].Publications of the American Statistical Association,1994,89:913-923. [37] Sanso A,Arrago V,Carrion J L.Testing for change in the unconditional variance of financial time series[J].Spanish Review of Financial Economics,2004,4:32-53. [38] Bollerslev T,Mikkelsen H O.Modeling and pricing long memory in stock market volatility[J].Journal of Econometrics,1996,73(1):151-184. [39] Hansen P,Lunde A.A forecast comparison of volatility models:does anything beat a GARCH(1,1)?[J].Journal of Applied Econometrics,2005,20(7):873-889. [40] Hillebrand E.Neglecting parameter changes in GARCH models[J].Journal of Econometrics,2005,129(1):121-138. |