[1] 气候组织. 智能电网在中国发展的现状与展望[R]. 政策简报, 2011, 3. Climate Organization. Current situation and prospect of smart grid development in China[R]. Policy Briefs, 2011, 3. [2] Samadi P, Mohsenian-Rad A H, Schober R, et al. Optimal real-time pricing algorithm based on utilitymaximization for smart grid[C]//First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA,Oct.4-6, 2010:415-420. [3] Samadi P, Mohsenian-Rad H, Schober R, et al. Advanced demand side management for the future smart gridusing mechanism design[J].IEEE Transactions on Smart Grid, 2012, 3(3):1170-1180. [4] Mohsenian-Rad A H, Wong V W S, Jatskevich J, et al. Autonomousdemand-sidemanagement basedon game-theoretic energy consumption scheduling for the futuresmart grid[J].IEEE Transactions on Smart Grid, 2010,1(3):320-331. [5] Song Xin, Qu Jiayu. An improved real-time pricing algorithm based on utility maximization for smart grid[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation. IEEE, Shenyang, China, June 29-July 4, 2014:2509-2513. [6] Asadi G, Gitizadeh M, Roosta A. Welfare maximization under real-time pricing in smart grid using PSO algorithm[C]//21st Iranian Conference on Electrical Engineering (ICEE),Mashhad, Iran, May 14-16, 2013. [7] 朱红波,高岩,代业明. 考虑风险的智能电网实时电价定价策略[J]. 系统仿真学报, 2018, 30(4):1376-1383. Zhu Hongbo, Gao Yan, Dai Yeming. Real-time pricing strategy considering the risk of smart grid[J]. Journal of System Simulation, 2018, 30(4):1376-1383. [8] 陶莉, 高岩, 朱红波, 等. 有可再生能源和电力存储设施并网的智能电网优化用电策略[J]. 中国管理科学, 2019,27(2):150-157. Tao Li,Gao Yan, Zhu Hongbo, et al. Optimal scheduling for smart grids with the integration of renewable resources and storage devices[J]. Chinese Journal of Management Science, 2019,27(2):150-157. [9] 王宏杰, 高岩. 基于非光滑方程组的智能电网实时定价[J]. 系统工程学报,2018,33(3):320-327. WangHongjie, Gao yan. Research on the real-time pricing of smart grid based on nonsmooth equation[J]. Journal of Systems Engineering,2018,33(3):320-327. [10] 高岩. 带有边际效用非递减用户的智能电网实时电价定价方法[J]. 工业工程与管理, 2018, 23(1):141-144. Gao Yan. Real-time pricing strategy for smart grid with users of non-decreasing marginal benefit[J]. Industrial Engineering and Management, 2018, 23(1):141-144. [11] Qian Liping, Zhang Ying Jun Angela, Huang Jianwei, et al. Demand response management via real-time electricity price control in smart grids[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(7):1268-1280. [12] Chang T H,Alizadeh M, Scaglione A. Real-time power balancing via decentralized coordinated home energy scheduling[J]. IEEE Transactions on Smart Grid, 2013, 4(3):1490-1504. [13] Zhu Hongbo, Gao Yan, Hou Yong, et al. Multi-time slots real-time pricing strategy with power fluctuation caused by operating continuity of smart home appliances[J]. Engineering Applications of Artificial Intelligence, 2018, 71:166-174. [14] Tan Zhongfu, Song Yihang, Zhang Huijuan, et al. Joint optimization model of generation side and user side based on energy-saving policy[J]. International Journal of Electrical Power & Energy Systems, 2014, 57:135-140. [15] 陈思运, 高峰, 刘烃,等. 基于因子隐马尔可夫模型的负荷分解方法及灵敏度分析[J]. 电力系统自动化, 2016, 40(21):128-136. ChenSiyun, Gao Feng, Liu Ting, et al. Load disaggregation method based on factorial hidden Markov model and its sensitivity analysis[J]. Automation of Electric Power Systems, 2016, 40(21):128-136. [16] Koichi K, Ichiro M, Kazunori S,et al. Modeling and design of real-time pricing systems based on Markov decision processes[J]. AppliedMathematics, 2014, 5(10):1485-1495. [17] 计鹿飞, 江琦, 唐昊,等. 基于半马尔可夫控制过程的智能电网最优储能控制[J]. 电力系统自动化, 2015, 39(6):24-27. Ji Lufei, Jiang Qi, Tang Hao, et al. Optimal enersy storage control for smart grid based on semi-Markov control processes[J]. Automation of Electric Power Systems, 2015, 39(6):24-27. [18] 禹威威, 刘世林, 陈其工,等. 考虑电动汽车充电和需求侧响应的光伏微电网多目标优化调度[J]. 电力系统及其自动化学报, 2018, 30(1):88-97. Yu Weiwei, Liu Shilin, Chen Qigong, et al. Multi-objective optimization scheduling for PV Microgrid considering electric vehicle charging and demand response[J]. Proceedings of the CSU-EPSA, 2018, 30(1):88-97. [19] Hu Mian, Xiao Jiangwen, Cui Shichang, et al. Distributed real-time demand response for energy management scheduling in smart grid[J]. International Journal of Electrical Power & Energy Systems, 2018, 99:233-245. [20] 朱红波, 高岩, 后勇,等. 马尔可夫过程下多类用户智能电网实时电价[J]. 系统工程理论与实践, 2018, 38(3):807-816. ZhuHongbo, Gao Yan, Hou Yong, et al. Real-time pricing considering different type of users based on Markov decision processes in smart grid[J]. Systems Engineering-Theory & Practice, 2018, 38(3):807-816. [21] Tang Qiang, Yang Kun, Zhou Dongdai, et al. A real-time dynamic pricing algorithm for smart grid with unstable energy providers and malicious users[J]. IEEE Internet of Things Journal, 2016, 3(4):554-562. [22] Bertsekas D P. Constrained optimization and Lagrange multiplier methods[M]. Belmont:Athena Scientific, 1996. [23] Bertsekas D P, Nedic A, Ozdagiar A E. Convex analysis and optimization[M]. Beijing:Tsinghua University Press,2006. [24] Stephen Boyd, Lieven Vandenberghe. Convex optimization[M]. Beijing:Tsinghua University Press,2013. [25] Trichakis N, Zymnis A, Boyd S. Dynamic network utility maximization with delivery contracts[J]. IFAC Proceedings, 2008, 41(2):2907-2912. |