Chinese Journal of Management Science ›› 2021, Vol. 29 ›› Issue (11): 1-12.doi: 10.16381/j.cnki.issn1003-207x.2020.0763
• Articles • Next Articles
CAI Guang-hui, XIANG Lin
Received:
2020-04-27
Revised:
2020-08-11
Online:
2021-11-20
Published:
2021-11-22
Contact:
项琳
E-mail:xlin430@foxmail.com
CLC Number:
CAI Guang-hui, XIANG Lin. The Volatility Estimation and VaR Measurement of China’s Copper Future Market: Based on Realized HAR GARCH Model Incorporating Generalized Realized Measures[J]. Chinese Journal of Management Science, 2021, 29(11): 1-12.
[1] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4): 885-905. [2] Engle R F. New frontiers for Arch models[J]. Journal of Applied Econometrics, 2002, 17(5): 425-446. [3] Hansen P R, Huang Zhuo, Shek H H. Realized GARCH: A joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906. [4] 王天一, 黄卓. 高频数据波动率建模—基于厚尾分布的Realized GARCH模型[J]. 数量经济技术经济研究, 2012, 29(5): 149-161.Wang Tianyi, Huang Zhuo. High frequency volatility modeling[J]. The Journal of Quantitative & Technical Economics, 2012, 29(5): 149-161. [5] 于孝建, 王秀花. 基于混频已实现GARCH模型的波动预测与VaR度量[J]. 统计研究, 2018, 35(1): 104-116.Yu Xiaojian, Wang Xiuhua. Mix frequency Realized GARCH models: The forecast of volatility and measure of VaR[J]. Statistical Research, 2018, 35(1): 104-116. [6] Muller U A, Dacorogna M M, Dave R D, et al. Volatilities of different time resolutions-Analyzing the dynamics of market components[J]. Journal of Empirical Finance, 1997, 4(2): 213-239. [7] Bollerslev T, Mikkelsen, H O. Modeling and pricing long memory in stock market volatility[J]. Journal of Econometrics, 1996, 73(1): 151-184. [8] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Economics, 2009, 7(2): 174-196. [9] 朱学红, 邹佳纹, 韩飞燕, 等. 引入外部冲击的中国铜期货市场高频波动率建模与预测[J]. 中国管理科学, 2018, 26(9): 52-61.Zhu Xuehong, Zou Jiawen, Han Feiyan, etal. Forecasting and modeling of China’s nonferrous metal futures market volatility based on the introduction of external shocks: Taking copper as example[J]. Chinese Journal of Management Science, 2018, 26(9): 52-61. [10] Huang Zhuo, Liu Hao, Wang Tianyi. Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model[J]. Economic Modelling, 2016, 52: 812-821. [11] 王天一, 刘浩, 黄卓. 基于混频数据抽样的已实现波动率长记忆模型[J]. 系统工程学报, 2018, 33(6): 812-822.Wang Tianyi, Liu Hao, Huang Zhuo. Model for the long memory of realized volatility based on mixed data sampling[J]. Journal of Systems Engineering, 2018, 33(6): 812-822. [12] 秦学志, 林先伟, 王文华. 基于长记忆性特征的欧式期权模糊定价研究[J]. 系统工程理论与实践, 2019, 39(12): 3073-3083.Qin Xuezhi, Lin Xianwei, Wang Wenhua. Fuzzy pricing of European option based on the long-term memory property[J]. Systems Engineering-Theory & Practice, 2019, 39(12): 3073-3083. [13] Louzis D P, Xanthopoulos-Sisinis S, Refenes A P. The role of high frequency intra-daily data, daily range and implied volatility in multi-period value-at-risk forecasting[J]. Journal of Forecasting, 2013, 32(6): 561-576. [14] 黄友珀, 唐振鹏, 周熙雯. 基于偏t分布realized GARCH模型的尾部风险估计[J]. 系统工程理论与实践, 2015, 35(9): 2200-2208.Huang Youpo, Tang Zhenpeng, Zhou Xiwen. Estimation of tail risk based on realized GARCH model with skew-t distribution[J]. Systems Engineering-Theory & Practice, 2015, 35(9): 2200-2208. [15] 蒋伟, 顾研. 基于广义已实现测度的Realized GARCH模型改进及应用[J]. 数量经济技术经济研究, 2019, 36(7): 156-173.Jiang Wei, Gu Yan. Forecasting VaR: Realized GARCH incorporating generalized realized measures[J]. The Journal of Quantitative & Technical Economics, 2019, 36(7): 156-173. [16] Barndorff-Nielsen O E, Shephard N. Estimating quadratic variation using realized variance[J]. Journal of Applied Econometrics, 2002, 17(5): 457-477. [17] Barndorff-Nielsen O E, Shephard N. Power and bipowervariation with stochastic volatility and jumps[J]. Journal of Financial Economics, 2004, 2(1): 1-37. [18] Bandi F M, Russell J R. Microstructure noise, realized volatility, and optimal sampling[J]. Review of Economic Studies, 2008, 75(2): 339-369. [19] Andersen T G, Dobrev D, Schaumburg E. Jump-robust volatility estimation using nearest neighbor truncation[J]. Journal of Econometrics, 2012, 169(1): 75-93. [20] Jorion P. Measuring the risk in value at risk[J]. Financial Analysts Journal, 1996, 6(1): 47-56. [21] Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26(7): 1487-1503. [22] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2): 73-84. [23] Christoffersen P F. Evaluating interval forecasts[J]. International Economic Journal, 1998, 39(4): 841-862. [24] González-Rivera G, Lee T H, Mishra S. Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood[J]. International Journal of Forecasting, 2004, 20(4): 629-645. [25] Sarma M, Thomas S, Shah A. Selection of value-at-risk models[J]. Journal of Forecasting, 2003, 22(4): 337-358. [26] Hansen P R, Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?[J]. Journal of Applied Econometrics, 2005, 20(7): 873-889. [27] Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. [28] 陈晓东. 中国金属期货市场高频波动率预测模型比较研究[J]. 管理工程学报, 2016, 30(3): 114-120.Chen Xiaodong. Comparative study on prediction model of high-frequency fluctuation of China's futures market[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30(3): 114-120. [29] Hurst H E. Long-term storage capacity of reservoirs[J]. American Society of Civil Engineers, 1951, 116: 770-799. [30] Peters E E. Chaos and order in the capital markets: A new view of cycles, prices, and market volatility[M]. New York: John Wiley and Sons Inc, 1991. [31] 郑丰, 崔积钰, 马志伟. 沪铜期货市场长记忆特征的R/S分析[J]. 辽宁大学学报(自然科学版), 2013, 40(1): 14-20.Zheng Feng, Cui Jiyu. Ma Zhiwei. R/S analysis on long-term memory characteristics of copper future market in SHFE[J]. Journal of Liaoning University (Natural Science Edition), 2013, 40(1): 14-20. |
[1] | Ranran Guo,Wuyi Ye,Xiaoquan Liu,Baiqi Miao. The Tail Dependence Between Commodity Futures Portfolios:Based on qpr-MIDAS Model [J]. Chinese Journal of Management Science, 2024, 32(10): 11-19. |
[2] | Xintao Han,Xiaomin Zhang,Xing Liu. The Optimal Monetary Policy Choice in Cooperation with Macro-Prudential Management: Based on China’s DSGE Analysis [J]. Chinese Journal of Management Science, 2024, 32(10): 1-10. |
[3] | Sicong Cheng,Tianyi Wang. Overnight Information and Option Pricing Model [J]. Chinese Journal of Management Science, 2024, 32(9): 1-10. |
[4] | Xinyu Wu,Haibin Xie,Chaoqun Ma. Economic Policy Uncertainty and Renminbi Exchange Rate Volatility: Evidence from CARR-MIDAS Model [J]. Chinese Journal of Management Science, 2024, 32(8): 1-14. |
[5] | Nan Xie,Haitao He,Yanju Zhou,Zongrun Wang. Research on Supply Chain Financial Decision Based on the Analysis of Central Government Project Subsidy under the Background of Rural Revitalization Subsidy [J]. Chinese Journal of Management Science, 2024, 32(8): 214-229. |
[6] | Xiaojian Yu,Guopeng Liu,Jianlin Liu,Weilin Xiao. Stock Index Prediction Based on LSTM Network and Text Sentiment Analysis [J]. Chinese Journal of Management Science, 2024, 32(8): 25-35. |
[7] | Xuanming Ni,Tiantian Zheng,Huimin Zhao,Kangping Wu. Asset Pricing Based on the Optimal Idiosyncratic Return Factor [J]. Chinese Journal of Management Science, 2024, 32(8): 50-60. |
[8] | Wenhua Yu,Xiangyang Ren,Kun Yang,Yu Wei. Asymmetric Effects of Infectious Diseases-related Uncertainty on the Volatility of Commodity Futures [J]. Chinese Journal of Management Science, 2024, 32(5): 254-264. |
[9] | Yi Cai,Zhenpeng Tang,Junchuang Wu,Xiaoxu Du,Kaijie Chen. Research on the Application of GWO-SVR Algorithm in the Prediction of Reverse Mixed Data in Stock Market and Investment Strategy [J]. Chinese Journal of Management Science, 2024, 32(5): 73-80. |
[10] | Zhongfei Li,Qi Zhou. An Industry Allocation Model Based on BL Model and Complex Network [J]. Chinese Journal of Management Science, 2024, 32(4): 1-13. |
[11] | Xuetong Zhang,Weiguo Zhang,Chao Wang. Tail Risks in Developed and Emerging Markets——Test of Spillover, Contagion and Contagion Determinants [J]. Chinese Journal of Management Science, 2024, 32(4): 14-25. |
[12] | Haiyuan Yin,Wenjuan Kou. Investor Sentiment Based on Naive Bayes Method and Its Impact on Stock Idiosyncratic Risk [J]. Chinese Journal of Management Science, 2024, 32(4): 38-47. |
[13] | Xiaoyan Wang,Shenggang Yang,Kekun Zhang. Ultimate Ownership Structure and Entrusted Loan Behavior of Enterprises [J]. Chinese Journal of Management Science, 2024, 32(4): 48-57. |
[14] | Aizhong Li,Ruoen Ren,Jichang Dong. Graph Network Risk Perception and Sparse Low-rank Portfolio Management Strategy [J]. Chinese Journal of Management Science, 2024, 32(4): 58-65. |
[15] | Xinyu Wu,Xiaoqing Jiang,Xindan Li,Chaoqun Ma. The Pricing of SSE 50 ETF Options with Realized EGARCH-FHS Model [J]. Chinese Journal of Management Science, 2024, 32(3): 105-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|