[1] 黄玮强, 庄新田, 姚爽. 基于信息传播和羊群行为的股票市场微观模拟研究[J]. 管理学报, 2010, 7(2): 273-277.Huang Weiqiang, Zhuang Xintian, Yao Shuang. Study on stock market micro simulation based on information propagation and herd behaviors[J]. Chinese Journal of Management, 2010, 7(2): 273-277. [2] Rui H, Abdullahi D A. Return and volatility spillovers effects: Evaluating the impact of Shanghai-Hong Kong stock connect[J]. Economic Modeling, 2016, 61(1): 260-272. [3] 刘海飞, 柏巍, 李冬昕, 等. 沪港通交易制度能提升中国股票市场稳定性吗? ——基于复杂网络的视角[J]. 管理科学学报, 2018, 21(1): 97-110.Liu Haifei, Bai Wei, Li Dongxin, et al. Does Shanghai-Hongkong stock connect trading mechanism improve the stability of Chinese stock market? A complex network perspective[J]. Journal of Management Sciences in China, 2018, 21(1): 97-110. [4] 易荣华, 邵洁浩. 基于DEA的中国证券市场竞争力国际比较[J]. 中国管理科学, 2019, 27(1): 1-21.Yi Ronghua, Shao Jiehao. International comparison of Chinese securities market competitiveness based on DEA[J]. Chinese Journal of Management Science, 2019, 27(1): 1-21. [5] 徐晓光, 廖文欣, 郑尊信. 沪港通背景下行业间波动溢出效应及形成机理[J]. 数量经济技术经济研究, 2017, 34(3): 112-127.Xu Xiaoguang, Liao Wenxin, Zheng Zunxin. Inter-industry volatility spillover effect and its formation mechanism under the background of Shanghai-Hongkong stock connect program[J]. The Journal of Quantitative & Technical Economics, 2017, 34(3): 112-127. [6] 唐勇, 朱鹏飞. 基于分形视角下的沪港股市投资组合策略[J]. 系统工程理论与实践, 2018, 38(9): 2188-2201.Tang Yong, Zhu Pengfei. Portfolio strategies of Shanghai & Hongkong stock markets from the perspective of fractal theory[J]. Systems Engineering-Theory & Practice, 2018, 38(9): 2188-2201. [7] Harvey C, Siddique A. Conditional skewness in asset pricing test[J]. The Journal of Finance, 2000, 55(3): 1263-1295. [8] Brooks C, Burke S P, Gita P. Autoregressive conditional kurtosis[J]. Journal of Financial Economics, 2005, 3(3): 399-421. [9] Leon A, Rubio G, Sema G. Autoregressive conditional volatility, skewness and kurtosis[J]. The Quarterly Review of Economics and Finance, 2005, 45(4): 599-618. [10] 梁春早. 基于GARCHSK的铜期货VaR估计方法研究[J]. 北京航空航天大学学报(社会科学版), 2010, 23(1): 81-83.Liang Chunzao. Study on the estimation of VaR of copper futures based on GARCHSK model[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2010, 23(1): 81-83. [11] 吕永健, 王鹏. 基于时变高阶矩模型的贵金属市场风险测度研究[J]. 管理科学, 2015, 28(1): 133-143.Lyu Yongjian, Wang Peng. Risk measurement on precious metal market given the context of time-varying high order moments[J]. Journal of Management Sciences, 2015, 28(1): 133-143. [12] Parash K N, Liu Ruipeng. A new GARCH model with higher moments for stock return predictability[J]. Journal of International Financial Markets, Institutions & Money, 2018, 56(1): 93-103. [13] You Leyuan, Nguyenb D. Higher order moment risk in efficient futures portfolios[J]. Journal of Economics and Business, 2013, 65(9): 33-54. [14] Clark P K. A subordinated stochastic process model with finite variance for speculative prices[J]. Econometric: Journal of the Econometric Society, 1973, 41(1): 135-155. [15] Chan K, Fong W M. Trade size, order imbalance, and the volatility-volume relation[J]. Journal of Financial Economics, 2000, 57(1): 247-273. [16] Rossi E, Magistris P S. Long memory and tail dependence in trading volume and volatility[J]. Journal of Empirical Finance, 2014, 22(1): 94-112. [17] 翟爱梅,邹彤. 基于市场参与者行为假设的股票市场量价关系研究[J]. 中国管理科学, 2011, 19(4): 31-37.Zhai Aimei, Zhou Tong. Volume-price relationship analysis in stock market under assumptions on market participants' behaviors: model and empirical tests[J]. Chinese Journal of Management Science, 2011, 19(4): 31-37. [18] 陈虹, 徐融. 中国股市量价关系研究[J]. 经济问题, 2017, 3(3): 30-40.Chen Hong, Xu Rong. The analysis on the price- amount relationship of Chinese stock exchanges[J]. On Economic Problems, 2017, 3(3): 30-40. [19] 张庆春, 王春峰. 中国股市波动性与成交量共同的长期记忆性研究[J]. 管理科学学报, 2005, 4(2): 38-45.Zhang Qingchun, Wang Chunfeng. Research on common long memory between trading volume and volatility in Chinese stock market[J]. Journal of Management Sciences in China, 2005, 4(2): 38-45. [20] 翟慧, 刘烨, 李娟. 基于遗传编程的中国股票市场有效性新检验[J]. 统计与决策, 2011, 12(23): 137-142.Zhai Hui, Liu Ye, Li Juan. A new test of the effectiveness of China's stock market based on Genetic Programming[J]. Statistics & Decision, 2011, 12(23): 137-142. [21] 孙彦林, 陈守东, 刘洋. 基于股市和汇市成交量信息视角的股价波动预测[J]. 系统工程理论与实践, 2019, 39(4): 935-945.Sun Yanlin, Chen Shoudong, Liu Yang. Forecast of stock price fluctuation based on the perspective of volume information in stock and foreign exchange market[J]. Systems Engineering-Theory & Practice, 2019, 39(4): 935-945. [22] Da Zhi, Engelberg J, Gao Pengjie. In search of attention[J]. The Journal of Finance, 2009, 5(5): 1461-1498. [23] Michael S D, Darren T R, Jacob R T. Investor information demand: Evidence from Google searches around earnings announcements[J]. Journal of Accounting Research, 2012, 50(4): 1-40. [24] Vozlyublennaia N. Investor attention, index performance and return predictability[J]. Journal of Banking & Finance, 2014, 41(1): 17-35. [25] 俞庆进, 张兵. 投资者有限关注与股票收益——以百度指数作为关注度的一项实证研究[J]. 金融研究, 2012, 8(8): 152-165.Yu Qingjin, Zhang Bing. Limited attention of investors and stock returns——An empirical study based on Baidu Index[J]. Journal of Financial Research, 2012, 8(8): 152-165. [26] 田冰, 刘晓雪, 胡俞越. 投资者关注与沪深300股票指数及股指期货波动溢出效应的传导研究[J]. 价格理论与实践, 2019, 4(1): 96-100.Tian Bing, Liu Xiaoxue, Hu Yuyue. Research on the fluctuation spillover effect transmission among investor attention, CSI 300 stock index and CSI 300 stock index futures——Based on the Baidu Index as an indicator of investor attention[J]. Price: Theory & Practice, 2019, 4(1): 96-100. [27] Huang Shupei, An Haizhong, Gao Xiangyun, et al. Time-frequency featured co-movement between the stock and prices of crude oil and gold[J]. Physica A, 2016, 444(15): 985-995. [28] Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Process of the Royal Society of London, 1998, 454(3): 903-995. [29] Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: A noise—assisted data analysis method[J]. Advance in Adaptive Data Analysis, 2009, 1(1): 1-41. [30] 桂文林, 黎庆莹. 基于EEMD-JADE模型的PMI与PPI结构分析及传导机制[J]. 数量经济技术经济研究, 2017, 34(4): 110-128.Gui Wenlin, Li Qingying. Structure analysis and transmission mechanism of the relationship between PMI and PPI based on EEMD-JJADE[J]. The Journal of Quantitative & Technical Economics, 2017, 34(4): 110-128. [31] 王书平, 胡爱梅, 吴振信. 基于多尺度组合模型的铜价预测研究[J].中国管理科学, 2014, 22(8): 21-28.Wang Shuping, Hu Aimei, Wu Zhenxin. Forecasting of copper price based on multi-scale combined model[J]. Chinese Journal of Management Science, 2014, 22(8): 21-28. [32] 许启发, 张世英. 多元条件高阶矩波动性建模[J]. 系统工程学报, 2007, 2(1): 1-33.Xu Qifa, Zhang Shiying. Multivariate conditional higher moments volatility modeling[J]. Journal of Systems Engineering, 2007, 2(1): 1-33. [33] Duffie D, Kan R. A yield-factor model of interest rate[J]. Mathematical Finance, 1996, 6(2): 379-462. [34] Martellini L, Ziemann V. Improve destimates of higher-order comments and implications for portfolio selection[J]. Review of Financial Studies, 2010, 23(4): 1467-1502. [35] Fry-Mckibbin R A, Hsiao Y L. Extremal dependence tests for contagion[J]. Econometric Reviews, 2015, 37(6): 626-649. [36] 王鹏, 蒋焰, 吴金宴. 原油价格与世界股票市场之间的高阶矩相依性研究[J]. 管理科学, 2017, 30(3): 136-146.Wang Peng, Jiang Yan, Wu Jinyan. Dependence of higher moments between oil price and international stock markets[J]. Journal of Management Sciences, 2017, 30(3): 136-146. [37] 李仲飞, 肖仁华, 杨利军. 基于集合经验模态分解技术的中国房地产周期识别研究[J].经济评论, 2014, 7(4): 108-121.Li Zhongfei, Xiao Renhau,Yang Lijun. Identifying real estate cycle in China: A study based on EEMD method[J]. Economic Review, 2014, 7(4): 108-121. [38] 王鹏, 吴金宴. 基于协高阶矩视角的沪港股市风险传染分析[J]. 管理科学学报, 2018, 21(6): 29-42.Wang Peng, Wu Jinyan. Risk contagion between Shanghai and Hong Kong stock market: A perspective of higher order co-moments[J]. Journal of Management Sciences in China, 2018, 21(6): 29-42. [39] 唐勇, 朱鹏飞. 网贷市场利率与成交量关系研究——基于不同监管时期数据的实证分析[J]. 中国管理科学, 2019, 27(7): 35-45.Tang Yong, Zhu Pengfei. The research on the relationship between the interest rate and volume in the P2P lending market——An empirical analysis based on data in different regulatory periods[J]. Chinese Journal of Management Science, 2019, 27(7): 35-45. [40] 周方召, 贾少卿. 经济政策不确定性、投资者情绪与中国股市波动[J]. 金融监管研究, 2019(8): 101-114.Zhou Fangzhao, Jia Shaoqing. Economic policy uncertainty, investor sentiment and volatility of China's stock market[J]. Financial Regulation Research, 2019(8): 101-114.
|