Chinese Journal of Management Science ›› 2022, Vol. 30 ›› Issue (6): 275-286.doi: 10.16381/j.cnki.issn1003-207x.2019.1450
• Articles • Previous Articles
WANG Shu-bin1, LU Quan-ying2, CHAI Jian3
Received:
2019-09-23
Revised:
2020-01-30
Online:
2022-06-20
Published:
2022-06-24
Contact:
卢全莹
E-mail:luquanying@amss.ac.cn
CLC Number:
WANG Shu-bin, LU Quan-ying, CHAI Jian. Research on the Effects of Technology Multi-index Combination on Unconventional Oil and Gas Production with GMDH-RSM Method[J]. Chinese Journal of Management Science, 2022, 30(6): 275-286.
[1] 雷群, 杨立峰, 段瑶瑶, 等. 非常规油气“缝控储量”改造优化设计技术[J]. 石油勘探与开发, 2018, 45(4): 719-726.Lei Qun, Yang Lifeng, Duan Yaoyao, et al. Optimization design technology for "fract-ure-controlled reserves" reconstruction of unconventional oil and gas[J]. Petroleum Exploration and Development, 2018, 45(4): 719-726. [2] 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019, 46(5): 803-810.Jiao Fangzheng. A new understanding of unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810. [3] Sébastien C, Julien M, Yann G.Unconventional oil and gas in France: From popular distrust to politicization of the underground[J]. The Extractive Industries and Society,2018,5(4):682-690. [4] Frank M.Using a segregated flow model to forecast production of oil, gas, and water in shale oil plays[J].Journal of Petroleum Science and Engineering,2019,180:48-61. [5] Matino I, Dettori S, Colla V, et al.Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management[J].Applied Energy,2019,253:Article 113578.https://doi.org/10.1016/j.apenergy.2019.113578. [6] Wang Shuhua, Chen Zan,Chen Shengnan.Applicability of deep neural networks on production forecasting in Bakken shale reservoirs[J].Journal of Petroleum Science and Engineering,179: 112-125. [7] MakindeI Lee W J.Principal components methodology-A novel approach to forecasting production from liquid-rich shale (LRS) reservoirs[J].Petroleum,2019,5(3):227-242. [8] Kim G, Lee H, Chen Zhuoheng, et al.Effect of reservoir characteristics on the productivity and production forecasting of the Montney shale gas in Canada[J].Journal of Petroleum Science and Engineering,2019,182,Article 106276.https://doi.org/10.1016/j.petrol.2019.106276. [9] Wang Jianliang, Mohr S, Feng Lianyong, et al. Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth[J].Energy Policy,2016,88:389-401. [10] 吴妍, 魏巍贤, 蔡文香. 中国非常规油气资源发展对策研究[J]. 中国人口·资源与环境, 2015, 25(S2): 292-295.Wu Yan, Wei weixian, Cai wenxiang. Study on development strategy of unconventional oil and gas resources in China[J]. China Population, Resources and Environment, 2015, 25(S2): 292-295. [11] 邹才能, 杨智, 何东博, 等. 常规—非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-587.Zou Caineng, Yang Zhi, He Dongbo, et al. Conventional and unconventional natural gas theory, technology and prospects[J]. Petroleum Exploration and Development, 2018, 45(4): 575-587. [12] 王树斌, 郭菊娥, 曹馨予, 等. 基于GMDH-Bayesian-SEM的非常规油气开发技术效应研究——以致密气生产数据为例[J]. 北京理工大学学报(社会科学版), 2017, 19(6): 49-57.Wang Shubin, Guo Jue, Cao xinyu, et al. Effect of unconventional oil and gas development technology based on GMDH-Bayesian SEM: A case study of tight gas production data[J]. Journal of Beijing Institute of Technology (Social Science Edition), 2017, 19(6): 49-57. [13] 李玉伟, 龙敏, 汤继周, 等. 考虑裂尖塑性区影响的水力压裂缝高计算模型[J]. 石油勘探与开发, 2020, 47(1): 175-185.Li Yuwei, Long Min, Tang Jizhou, et al. Hydraulic fracture height calculation model considering the influence of crack tip plastic zone[J]. Petroleum Exploration and Development, 2020, 47(1): 175-185. [14] 张金武, 王国勇, 何凯, 等. 苏里格气田老井侧钻水平井开发技术实践与认识[J]. 石油勘探与开发, 2019, 46(2): 370-377.Zhang Jinwu, Wang Guoyong, He Kai, et al. Practice and understanding of lateral drilling horizontal well development technology in Sulige Gas Field[J]. Petroleum Exploration and Development, 2019, 46(2): 370-377. [15] 王军磊, 贾爱林, 位云生, 等. 基于多井模型的压裂参数—开发井距系统优化[J]. 石油勘探与开发, 2019, 46(5): 981-992.Wang Junlei, Jia Ailin, Wei Yunsheng, et al. Optimization of fracturing parameters-development well spacing system based on multi-well model[J]. Petroleum Exploration and Development, 2019, 46(5): 981-992. [16] Solarin S A, Gil-Alana L A, Lafuente C. An investigation of long range reliance on shale oil and shale gas production in the U.S. market[J]. Energy,2020,195, Article 116933, https://doi.org/10.1016/j.energy.2020.116933. [17] Wang Hui,Chen Li, Qu Zhiguo, et al. Modeling of multi-scale transport phenomena in shale gas production-A critical review[J]. Applied Energy,2020,262, Article 114575, https://doi.org/10.1016/j.apenergy.2020.114575. [18] Wang Qiang, Li Shuyu, Li Rongrong, et al. Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model[J]. Energy,2018,160:378-387. [19] 杨福霞, 徐江川, 杨冕, 等. 能源价格波动、诱导性技术进步与中国环境全要素生产率[J]. 中国管理科学, 2018, 26(11): 31-41.Yang Fuxia, Xu Jiangchuan, Yang Mian, et al. Energy price fluctuation, induced technological progress and environmental total factor productivity in China[J]. Chinese Journal of Management Science, 2018, 26(11): 31-41. [20] 夏晖, 王思逸, 蔡强. 多目标条件下企业碳配额分配和政府公平——基于(p,α)比例公平的视角[J]. 中国管理科学, 2019, 27(4): 48-55.Xia Hui, Wang Simiao, Cai Qiang. Carbon quota allocation and government equity under multi-objective conditions: Based on (P,α) proportional equity perspective[J]. Chinese Journal of Management Science, 2019, 27(4): 48-55. [21] 刘晓燕, 吕涛. 考虑先期和当期资源投入的能源应急协同研究[J]. 中国管理科学, 2019, 27(3): 180-188.Liu Xiaoyan, Lv Tao. Collaborative research on energy emergency response considering upfront and current resource input[J]. Chinese Journal of Management Science, 2019, 27(3): 180-188. [22] 宋妍, 陈赛, 张明. 地方政府异质性与区域环境合作治理——基于中国式分权的演化博弈分析[J]. 中国管理科学, 2020, 28(1): 201-211.Song Yan, Chen Sai, Zhang Ming. Local government heterogeneity and regional environmental cooperative governance: An Evolutionary game analysis based on Chinese decentralization[J]. Chinese Journal of Management Science, 2020, 28(1): 201-211. [23] 陈星星. 非期望产出下我国能源消耗产出效率差异研究[J]. 中国管理科学, 2019, 27(8): 191-198.Chen Xingxing. Research on output efficiency difference of energy consumption in China under non-expected output[J]. Chinese Journal of Management Science, 2019, 27(8): 191-198. [24] 谭英双, 张雪清, 衡爱民. 需求不确定下企业生产规模选择及影响因素研究[J]. 中国管理科学, 2018, 26(8): 138-145.Tan Yingshuang, Zhang Xueqing, Heng Aimin. Research on production scale selection and influencing factors of enterprises with uncertain demand[J]. Chinese Journal of Management Science, 2018, 26(8): 138-145. [25] 肖进, 孙海燕, 刘敦虎, 等. 基于GMDH混合模型的能源消费量预测研究[J]. 中国管理科学, 2017, 25(12): 158-166.Xiao Jin, Sun Haiyan, Liu Dunhu, et al. Research on energy consumption forecast based on GMDH hybrid model[J]. Chinese Journal of Management Science, 2017, 25(12): 158-166. [26] 郭菊娥, 张剑如, 薛鹏, 等. 基于GMDH-SVR致密气开发过程参数优化[J]. 运筹与管理, 2018, 27(11): 10-16.Guo Jue, Zhang Jianru, Xue Peng. Optimization of tight gas development process parameters based on GMDH-SVR[J]. Operations Research and Management, 2018, 27(11): 10-16. [27] Box G E P, Wilson K B. Breakthroughs in Statistics: On the experimental attainment of optimum conditions [M]. New York: Springer, 1992. [28] Hill W J, Hunter W G. A review of response surface methodology: A literature survey[J]. Technometrics, 1966, 8(4): 571-590. [29] 柏帅蛟, 井润田, 李璞,等. 匹配研究中使用响应面分析的方法[J]. 管理评论, 2018, 30(3): 161-170.Bai Shuaijiao, Jing Runtian, Li Pu, et al. Response surface analysis in matching research[J]. Management Review, 2018, 30(3): 161-170. [30] 张兰霞, 张靓婷, 朱坦. 领导—员工认知风格匹配对员工创造力与创新绩效的影响[J]. 南开管理评论, 2019, 22(2): 165-175.Zhang Lanxia, Zhang Liangting, Zhu Tan. The influence of leader-employee cognitive style matching on employee creativity and innovation performance[J]. Nankai Management Review, 2019, 22(2): 165-175. [31] 裴艳丽, 姜汉桥, 李俊键, 等. 页岩气新井压裂规模优化设计[J]. 断块油气田, 2016, 23(2): 265-268.Pei Yanli, Jiang Hanqiao, Li Junjian, et al. Optimization design of fracturing scale for new shale gas wells[J]. Fault-block Oil and Gas Fields, 2016, 23(2): 265-268. [32] 王涛, 颜明, 郭海波. 一种新的回归分析方法——响应曲面法在数值模拟研究中的应用[J]. 岩性油气藏, 2011, 2: 100-104.Wang Tao, Yan Ming, Guo Haibo. A new regression analysis method——application of response surface method in numerical simulation[J]. Lithologic Reservoir, 2011, 2: 100-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|