Chinese Journal of Management Science ›› 2022, Vol. 30 ›› Issue (12): 131-140.doi: 10.16381/j.cnki.issn1003-207x.2021.2694
• Articles • Previous Articles Next Articles
NIU Ben1, 2, GUO Chen3, TANG Heng3
Received:
2021-08-10
Revised:
2022-02-17
Online:
2022-12-20
Published:
2022-12-20
Contact:
郭晨
E-mail:chen.guo@connect.um.edu.mo
CLC Number:
NIU Ben, , GUO Chen, TANG Heng. Multi-objective Multi-learning Bacterial Foraging Optimization Algorithm for Mixed Data Clustering[J]. Chinese Journal of Management Science, 2022, 30(12): 131-140.
[1] 胡晓东, 高嘉伟. 基于分组模型的引力搜索智能大数据聚类方法[J]. 计算机工程与设计, 2021, 42(6): 1660-1667.Hu Xiaodong, Gao Jiawei. Intelligent big data clustering using gravitational search based on grouping[J]. Computer Engineering and Design, 2021, 42(6): 1660-1667. [2] 陈晔, 孙汪泉, 徐海燕. 基于聚类分析的案例距离决策模型[J]. 中国管理科学, 2015, 23(S1): 102-107.Chen Ye, Sun Wangquan, Xu Haiyan. The study of case-based distance decision model based on clustering analysis[J]. Chinese Journal of Management Science, 2015, 23(S1): 102-107. [3] 王泽洲, 陈云翔, 项华春. 一种改进型专家模糊核聚类赋权方法研究[J]. 中国管理科学, 2021, 29(2): 177-183.Wang Zezhou, Chen Yunxiang, Xiang Huachun. Research. on an improved expert cluster weighting method based on fuzzy kernel clustering[J]. Chinese Journal of Management Science, 2021, 29(2): 177-183. [4] Han Jiawei, Pei Jian, Kamber M. Data mining: concepts and techniques[M]. Elsevier, 2011. [5] Lloyd S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28(2): 129-137. [6] Huang Zhexue. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304. [7] 刘超, 姚清华, 乐然. 混合型数据聚类方法的比较[J]. 统计与决策, 2019, 35(11): 64-67.Liu Chao, Yao Qinghua, Le Ran. Comparison of clustering methods for mixed data[J]. Statistics & Decision, 2019, 35(11): 64-67. [8] Huang Zhexue. Clustering large data sets with mixed numeric and categorical values[C]∥Proceedings of the 1st pacific-asia conference on knowledge discovery and data mining (PAKDD), 1997. [9] Ahmad A, Khan S S. Survey of state-of-the-art mixed data clustering algorithms[J]. IEEE Access, 2019, 7: 31883-31902. [10] Ahmad A, Dey L. A k-mean clustering algorithm for mixed numeric and categorical data[J]. Data & Knowledge Engineering, 2007, 63(2): 503-527. [11] Hancer E, Karaboga D. A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number[J]. Swarm and Evolutionary Computation, 2017, 32: 49-67. [12] AlSahaf H, Bi Y, Chen Q, et al. A survey on evolutionary machine learning[J]. Journal of the Royal Society of New Zealand, 2019, 49(2): 205-228. [13] Guo Chen, Tang Heng, Niu Ben, et al. A survey of bacterial foraging optimization[J]. Neurocomputing, 2021,452: 728746. [14] Wangchamhan T, Chiewchanwattana S, Sunat K. Efficient algorithms based on the k-means and chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering[J]. Expert Systems with Applications, 2017, 90: 146-167. [15] Gower J C. A general coefficient of similarity and some of its properties[J]. Biometrics, 1971,27(4): 857-871. [16] Ji Jinchao, Chen Yongbing, Feng Guozhong, et al. Clustering mixed numeric and categorical data with artificial bee colony strategy[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(2): 1521-1530. [17] Ji Jinchao, Pang Wei, Li Zairong, et al. Clustering mixed numeric and categorical data with cuckoo search[J]. IEEE Access, 2020(8): 30988-31003. [18] Nooraeni R, Arsa M I, Projo N W K. Fuzzy centroid and genetic algorithms: Solutions for numeric and categorical mixed data clustering[J]. Procedia Computer Science, 2021, 179: 677-684. [19] Dutta D, Dutta P, Sil J. Data clustering with mixed features by multi objective genetic algorithm[C]∥Proceedings of the 2012 12th International Conference on Hybrid Intelligent Systems (HIS), Pune, India, Dec.4-7,2012. [20] Dutta D, Dutta P, Sil J. Simultaneous feature selection and clustering with mixed features by multi objective genetic algorithm[J]. International Journal of Hybrid Intelligent Systems, 2014, 11(1): 41-54. [21] Dutta D, Sil J, Dutta P. Automatic clustering by multi-objective genetic algorithm with numeric and categorical features[J]. Expert Systems with Applications, 2019, 137: 357-379. [22] Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67. [23] 边琦, 张梦寒, 王建平, 等.基于改进细菌觅食算法的飞控系统多模态参数优化[J]. 控制与决策,2022,37(8): 1-8.Bian qi, Zhang Menghan, Wang Jianping, et al. An improved bacterial foraging algorithm for multimodal parameter optimization of the flight control system[J]. Control and Decision,2022,37(8): 1-8. [24] Wan Miao, Li Lixiang, Xiao Jinghua, et al. Data clustering using bacterial foraging optimization[J]. Journal of Intelligent Information Systems, 2012, 38(2): 321-341. [25] Niu Ben, Duan Qiqi, Liang Jing. Hybrid bacterial foraging algorithm for data clustering[C]∥Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Hefei, China, Oct.20-23,2013. [26] Revathi J, Eswaramurthy V, Padmavathi P. Bacterial colony optimization for data clustering[C]∥Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Tamil Nadu, India, Feb.20-22,2019. [27] Guo Chen, Tang Heng, Niu Ben. Evolutionary state-based novel multi-objective periodic bacterial foraging optimization algorithm for data clustering[J]. Expert Systems, 2021,39(1): e12812. [28] Niu Ben, Duan Qiqi, Wang Hong, et al. Simplified bacterial foraging optimization with quorum sensing for global optimization[J]. International Journal of Intelligent Systems, 2021,36(6): 2639-2679. [29] Zhan Zhihui, Zhang Jun, Li Yun, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(6): 1362-1381. [30] Niu Ben, Wang Jingwen, Wang Hong. Bacterial-inspired algorithms for solving constrained optimization problems[J]. Neurocomputing, 2015, 148: 54-62. [31] Zheng Qibin, Diao Xingchun, Cao Jianjun, et al. From whole to part: reference-based representation for clustering categorical data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(3): 927-937. [32] Nouaouria N, Boukadoum M. Improved global-best particle swarm optimization algorithm with mixed-attribute data classification capability[J]. Applied Soft Computing, 2014, 21: 554-567. [33] Ji Jinchao, Bai Tian, Zhou Chunguang, et al. An improved k-prototypes clustering algorithm for mixed numeric and categorical data[J]. Neurocomputing, 2013, 120: 590-596. [34] Nguyen T P Q, Kuo R J. Automatic Fuzzy Clustering Using Non-Dominated Sorting Particle Swarm Optimization Algorithm for Categorical Data[J]. IEEE Access, 2019, 7: 99721-99734. [35] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. [36] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197. [37] Yang Yiming. An evaluation of statistical approaches to text categorization[J]. Information Retrieval, 1999(1): 69-90. [38] Davies D L, Bouldin D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1979, 1(2): 224-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|