[1] 史欣向, 李善民, 王满四,等. “新常态”下的产业安全评价体系重构与实证研究——以中国高技术产业为例[J]. 中国软科学, 2015(7):111-126.Shi Xinxiang, Li Shanmin, Wang Mansi, et al. The reconstruction of Chinese industrial security evaluation system in the context of new normal: example from Chinese high-tech industry[J]. China Soft Science, 2015(7):111-126. [2] 周梁, 张亚斌, 汪蕾. 出口贸易风险测度及其影响因素分析——基于跨国数据的经验研究[J]. 财经理论与实践, 2015, 36(2):118-122.Zhou Liang, Zhang Yabin, Wang Lei. Export trade risk measure and its influencing factors: based on the empirical research of the multinational data[J]. The Theory and Practice of Finance and Economics, 2015, 36(2):118-122. [3] 曾孟夏, 赵彦云. 产业贸易风险监测系统:基于国际竞争力的设计——以机械设备制造业为例[J]. 国际贸易问题, 2014(8):47-57.Zeng Mengxia, Zhao Yanyun. Monitoring system of industrial trade risks constructed on international industrial competitiveness: an example study of mechanical equipment industry[J]. Journal of International Trade, 2014(8):47-57. [4] 李笑影, 李玲芳. 互联网背景下应对“一带一路”贸易风险的机制设计研究[J]. 中国工业经济, 2018(12):97-114.Li Xiaoying, Li Lingfang. A study on mechanism design for reducing risk in “the belt and road” international trades under internet circumstances[J]. China Industrial Economics, 2018(12):97-114. [5] 武力超, 张馨月, 关悦. 中国贸易产品多样性的测度及动态分析[J]. 数量经济技术经济研究, 2016, 33(7):40-58.Wu Lichao, Zhang Xinyue, Guan Yue. Trade product diversity measurement and dynamic analysis[J]. The Journal of Quantitative & Technical Economics, 2016, 33(7):40-58. [6] 祝树金, 赖明勇. 基于贝叶斯正则化的TDBPNN模型在中国外贸预报中的应用及评估[J].中国管理科学, 2005(1):2-9.Zhu Shujin, Lai Mingyong. An application of the TDBPNN model based on Bayes’ regularization to forecasting China’s foreign trade and evaluation[J]. Chinese Journal of Management Science, 2005(1):2-9. [7] Ahmed N K, Atiya A F, Gayar N E, et al. An empirical comparison of machine learning models for time series forecasting[J]. Econometric Reviews, 2010, 29(5-6):594-621. [8] 杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(3): 65-77.Yang Qing, Wang Chenwei. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research, 2019, 36(3): 65-77. [9] Heaton J B, Polson N G, Witte J H. Deep learning for finance: deep portfolios[J]. Applied Stochastic Models in Business and Industry, 2016, 33(1): 3-12. [10] 欧阳红兵, 黄亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4):27-35.Ouyang Hongbing, Huang Kang, Yan Hongju. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4):27-35. [11] 于志军, 杨善林, 章政,等. 基于误差校正的灰色神经网络股票收益率预测[J]. 中国管理科学, 2015, 23(12): 20-26.Yu Zhijun, Yang Shanlin, Zhang Zheng, et al. Stock returns prediction based on error-correction grey neural network[J]. Chinese Journal of Management Science, 2015, 23(12): 20-26. [12] 潘和平, 张承钊. FEPA-金融时间序列自适应组合预测模型[J]. 中国管理科学, 2018, 26(6): 26-38.Pan Heping, Zhang Chengzhao. FEPA: an adaptive integrated prediction model of financial time series[J]. Chinese Journal of Management Science, 2018, 26(6): 26-38. [13] Li Xiaojun, Tang Pan. Stock index prediction based on wavelet transform and FCD-MLGRU[J]. Journal of Forecasting, 2020(16):1-9. [14] Bishop C M. Pattern recognition and machine learning[M]. New York: Springer, 2006. [15] Vapnik V N. Statistical learning theory[M]. New Jersey:Wiley-Interscience, 1998. [16] Breiman L. Bagging predictors[J]. Machine Learning. 1996, 24(2):123–140. [17] Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictors[J]. Machine Learning, 1999, 37(3):297-336. [18] 胡广书. 现代信号处理教程[M]. 北京: 清华大学出版社, 2014.Hu Guangshu. Modern signal processing tutorial[M]. Tsinghua University Press, Beijing, 2004. [19] 刘金培, 林盛, 郭涛,等. 一种非线性时间序列预测模型及对原油价格的预测[J]. 管理科学, 2011, 24(6): 104-112.Liu Jinpei, Lin Sheng, Guo Tao, et al. Nonlinear time series forecasting model and its application for oil price forecasting[J]. Journal of Management Science, 2011, 24(6): 104-112. [20] Singh S, Parmar K S, Kumar J. Soft computing model coupled with statistical models to estimate future of stock market[J]. Neural Computing and Application,2021, (33):7629-7647. [21] Yuan Chaoqing, Liu Sifeng, Fang Zhigeng. Comparison of China’s primary energy consumption forecasting by using ARIMA(the autoregressive integrated moving average) model and GM(1,1) model[J]. Energy, 2016, 100:384-390. [22] 金碚, 李钢, 陈志. 加入WTO以来中国制造业国际竞争力的实证分析[J]. 中国工业经济, 2006(10): 5-14.Jin Bei, Li Gang, Chen Zhi. An empirical analysis on international competitiveness of China manufacturing since WTO accession[J]. China Industrial Economy, 2006(10): 5-14. [23] 吕云龙, 吕越. 制造业出口服务化与国际竞争力——基于增加值贸易的视角[J].国际贸易问题,2017(5):25-34.Lv Yunlong, Lv Yue. Servitization of manufacturing export and international competitiveness: based on the perspective of value added trade[J]. Journal of International Trade, 2017(5):25-34. [24] 刘向丽, 王旭朋. 基于小波分析的股指期货高频预测研究[J]. 系统工程理论与实践, 2015, 35(6):1425-1432.Liu Xiangli, Wang Xupeng. Research on high frequency data forecasting of stock index futures market based on wavelet analysis[J]. System Engineering Theory and Practice, 2015, 35(6):1425-1432. [25] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15(1):1929-1958. [26] 张永军. 经济景气计量分析方法与应用研究[M]. 北京: 中国经济出版社, 2007.Zhang Yongjun. Econometric analysis methods and application research of economic prosperity[M]. Economic Press China, Beijing, 2007.
|