Chinese Journal of Management Science ›› 2023, Vol. 31 ›› Issue (12): 203-214.doi: 10.16381/j.cnki.issn1003-207x.2022.0461
Previous Articles Next Articles
Xian-cheng ZHOU1,2,Tao-ying JIANG2,Cai-hong HE3(),Li WANG1,Yang LV1
Received:
2022-03-07
Revised:
2022-06-30
Online:
2023-12-15
Published:
2023-12-20
Contact:
Cai-hong HE
E-mail:hecaihong1991@163.com
CLC Number:
Xian-cheng ZHOU,Tao-ying JIANG,Cai-hong HE,Li WANG,Yang LV. Green Vehicle Routing Model and Its Solution Algorithm in Cold-chain Logistics Distribution[J]. Chinese Journal of Management Science, 2023, 31(12): 203-214.
"
符号 | 含义 |
---|---|
配送网络节点集合 | |
顾客点集合 | |
配送车辆集合 | |
从节点i到节点j的距离 | |
所有车辆配送距离之和 | |
车辆最大容量 | |
车辆k行驶在道路 | |
顾客点i的需求量 | |
配送总成本 | |
顾客平均满意度 | |
顾客点i的满意度 | |
顾客点i的服务时间 | |
车辆k在道路 | |
配送车辆的行驶速度 | |
车辆从配送中心出发的时刻 | |
车辆k到达节点i的时刻 | |
配送中心时间窗 | |
顾客i期望的理想服务时间窗(硬时间窗) | |
顾客i可接受的服务时间窗(软时间窗) | |
车辆k从节点i行驶到节点j产生的油耗量(单位:升) | |
车辆k从节点i到节点j因制冷产生的油耗量(单位:升) | |
燃油排放参数 | |
车辆k从节点i行驶到节点j产生的碳排放量(单位:千克) | |
车辆k从节点i到节点j因制冷产生的碳排放量(单位:千克) | |
配送车辆的固定发车费用(单位:元/辆) | |
车辆使用单位时间成本(单位:元/小时) | |
冷链产品单位重量的价格(单位:元/千克) | |
车辆行驶过程中货物新鲜度衰减系数; | |
车辆行驶过程中制冷系统的油耗率(单位:升/小时) | |
车辆在配送服务期间制冷系统的油耗率(单位:升/小时) | |
单位油耗费用(单位:元/升) | |
单位碳排放费用(单位:元/千克) | |
早到顾客点服务的时间窗违背惩罚系数(单位:元/小时) | |
晚到顾客点服务的时间窗违背惩罚系数(单位:元/小时) | |
0-1变量,当车辆k由节点i向节点j行驶时其值为1,否则为0 | |
0-1变量,当顾客i由车辆k服务时其值为1,否则为0 |
"
前沿点 | 优化目标 | D | K | ||||||
---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | C1 | C2 | C3 | C4 | C5 | |||
1 | 6748.20 | 0.920 | 2990.30 | 1117.91 | 1960.96 | 55.35 | 623.68 | 825.25 | 5 |
2 | 6781.02 | 0.922 | 2999.41 | 1126.06 | 1973.33 | 55.70 | 626.52 | 832.84 | 5 |
3 | 6792.45 | 0.923 | 3001.96 | 1126.14 | 1974.54 | 55.73 | 634.07 | 834.97 | 5 |
4 | 6837.06 | 0.926 | 3018.14 | 1125.97 | 1993.16 | 56.26 | 643.54 | 848.45 | 5 |
5 | 6839.06 | 0.929 | 3028.17 | 1097.79 | 2007.95 | 56.68 | 648.47 | 856.81 | 5 |
6 | 6853.43 | 0.931 | 3038.55 | 1107.40 | 2021.71 | 57.07 | 628.70 | 865.46 | 5 |
7 | 6870.99 | 0.932 | 3045.78 | 1137.42 | 2034.28 | 57.42 | 596.10 | 871.48 | 5 |
8 | 6881.21 | 0.934 | 3053.00 | 1105.18 | 2040.49 | 57.60 | 624.95 | 877.50 | 5 |
9 | 6905.57 | 0.936 | 3054.74 | 1112.69 | 2043.50 | 57.68 | 636.96 | 878.95 | 5 |
10 | 6922.91 | 0.937 | 3057.86 | 1117.61 | 2048.24 | 57.81 | 641.39 | 881.55 | 5 |
11 | 6955.64 | 0.938 | 3072.57 | 1143.62 | 2064.86 | 58.28 | 616.30 | 893.81 | 5 |
12 | 7007.06 | 0.941 | 3113.77 | 1127.06 | 2121.59 | 59.88 | 584.75 | 928.15 | 5 |
13 | 7064.86 | 0.942 | 3119.87 | 1167.71 | 2135.21 | 60.27 | 581.80 | 933.23 | 5 |
14 | 7079.98 | 0.943 | 3121.24 | 1169.90 | 2136.99 | 60.32 | 591.54 | 934.37 | 5 |
15 | 7131.49 | 0.944 | 3146.46 | 1152.16 | 2167.38 | 61.18 | 604.31 | 955.39 | 5 |
16 | 7136.47 | 0.944 | 3157.24 | 1174.33 | 2159.67 | 60.96 | 584.28 | 964.36 | 5 |
17 | 7159.99 | 0.948 | 3194.84 | 1138.59 | 2231.85 | 63.00 | 531.72 | 995.70 | 5 |
18 | 7189.64 | 0.950 | 3169.95 | 1144.62 | 2197.16 | 62.02 | 615.89 | 974.96 | 5 |
19 | 7192.27 | 0.953 | 3176.11 | 1189.71 | 2193.64 | 61.92 | 570.90 | 980.09 | 5 |
20 | 7215.48 | 0.954 | 3183.59 | 1189.22 | 2203.70 | 62.20 | 576.77 | 986.33 | 5 |
21 | 7243.31 | 0.955 | 3194.09 | 1195.25 | 2219.76 | 62.66 | 571.56 | 995.08 | 5 |
22 | 7261.61 | 0.956 | 3199.41 | 1189.96 | 2224.38 | 62.79 | 585.07 | 999.51 | 5 |
23 | 7273.49 | 0.957 | 3204.25 | 1196.38 | 2230.70 | 62.96 | 579.20 | 1003.54 | 5 |
24 | 7284.97 | 0.959 | 3223.97 | 1179.87 | 2263.31 | 63.88 | 553.94 | 1019.98 | 5 |
25 | 7297.84 | 0.961 | 3213.13 | 1203.90 | 2253.61 | 63.61 | 563.59 | 1010.94 | 5 |
26 | 7342.02 | 0.963 | 3228.95 | 1205.35 | 2274.42 | 64.20 | 569.10 | 1024.13 | 5 |
27 | 7350.58 | 0.964 | 3237.90 | 1188.93 | 2284.04 | 64.47 | 575.25 | 1031.58 | 5 |
28 | 7387.23 | 0.964 | 3249.49 | 1203.08 | 2300.87 | 64.94 | 568.85 | 1041.24 | 5 |
29 | 7404.43 | 0.965 | 3268.26 | 1201.76 | 2324.95 | 65.62 | 543.84 | 1056.88 | 5 |
30 | 7462.23 | 0.969 | 3296.17 | 1218.69 | 2362.80 | 66.69 | 517.88 | 1080.14 | 5 |
31 | 7480.08 | 0.969 | 3306.96 | 1215.13 | 2376.49 | 67.08 | 514.41 | 1089.13 | 5 |
32 | 7499.79 | 0.971 | 3308.33 | 1218.50 | 2378.48 | 67.14 | 527.35 | 1090.28 | 5 |
33 | 7559.18 | 0.971 | 3335.27 | 1215.51 | 2412.16 | 68.09 | 528.15 | 1112.72 | 5 |
34 | 7583.55 | 0.972 | 3338.10 | 1259.96 | 2420.09 | 68.31 | 497.09 | 1115.08 | 5 |
35 | 7618.04 | 0.974 | 3350.26 | 1259.42 | 2435.70 | 68.75 | 503.91 | 1125.22 | 5 |
36 | 7755.90 | 0.977 | 3357.55 | 1321.94 | 2448.89 | 69.12 | 558.40 | 1131.29 | 5 |
37 | 7786.98 | 0.977 | 3372.00 | 1320.55 | 2467.81 | 69.66 | 556.96 | 1143.33 | 5 |
38 | 7802.03 | 0.978 | 3373.37 | 1322.68 | 2469.57 | 69.71 | 566.70 | 1144.48 | 5 |
39 | 7849.50 | 0.981 | 3407.70 | 1315.43 | 2518.75 | 71.09 | 536.53 | 1173.08 | 5 |
40 | 7891.09 | 0.982 | 3411.24 | 1334.76 | 2525.80 | 71.29 | 548.00 | 1176.03 | 5 |
41 | 7903.19 | 0.983 | 3421.18 | 1326.79 | 2537.98 | 71.64 | 545.61 | 1184.31 | 5 |
42 | 8052.04 | 0.984 | 3470.83 | 1346.36 | 2608.69 | 73.63 | 552.53 | 1225.69 | 5 |
平均值 | 7277.47 | 0.954 | 3202.67 | 1195.51 | 2239.27 | 63.21 | 576.82 | 1002.22 | 5 |
"
算例 | PN | 优 化 目 标 | D | K | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | C1 | C2 | C3 | C4 | C5 | ||||
R202 | 41 | 7680.0 | 0.853 | 2772.1 | 1167.6 | 1957.1 | 55.2 | 1727.8 | 810.1 | 4 |
R204 | 41 | 6949.7 | 0.973 | 2905.5 | 1254.7 | 2129.8 | 60.1 | 599.6 | 921.2 | 4 |
R206 | 42 | 7723.4 | 0.886 | 2986.9 | 1247.9 | 2236.2 | 63.1 | 1189.2 | 989.1 | 4 |
R208 | 41 | 6675.9 | 0.976 | 2901.5 | 1167.6 | 2115.6 | 59.7 | 431.5 | 917.9 | 4 |
RC202 | 40 | 8440.9 | 0.853 | 3269.3 | 1172.3 | 2319.7 | 65.5 | 1614.1 | 1024.1 | 5 |
RC204 | 42 | 7277.5 | 0.954 | 3202.6 | 1195.5 | 2239.2 | 63.2 | 576.8 | 1002.2 | 5 |
RC206 | 41 | 8729.1 | 0.841 | 3371.4 | 1291.0 | 2458.2 | 69.3 | 1539.2 | 1142.8 | 5 |
RC208 | 42 | 8293.4 | 0.906 | 3507.6 | 1396.5 | 2648.8 | 74.8 | 665.8 | 1277.4 | 5 |
1 | Brito J, Martinez FJ, Moreno JA, et al. Fuzzy optimization for distribution of frozen food with imprecise times[J]. Fuzzy Optimization and Decision Making, 2012, 11 (3): 337-49. |
2 | 王淑云, 孙虹. 随机需求下冷链品多温共配路径优化研究[J]. 工业工程与管理, 2016, 21(2): 49-58. |
Wang Shuyun, Sun Hong. Optimization of multitemperature joint distribution with stochastic demands[J]. Industrial Engineering and Management,2016,21(2): 49-58. | |
3 | Qi Chengming, Hu Lishuan.Optimization of vehicle routing problem for emergency cold chain logistics based on minimum loss[J]. Physical Communication, 2020,40(2):101085. |
4 | 姚源果, 贺盛瑜.基于交通大数据的农产品冷链物流配送路径优化研究[J].管理评论, 2019, 31(4): 240-253. |
Yao Yuanguo, He Shengyu. Research on optimization of distribution route for cold chain logistics of agricultural products based on traffic big data[J].Management Review, 2019, 31 (4): 240-253. | |
5 | 刘春玲, 王俊峰, 黎继子, 等.众包模式下冷链物流配送模型的仿真和优化分析[J].计算机集成制造系统, 2019, 25(10): 2666-2675. |
Liu Chunling, Wang Junfeng, Li Jizi, et al. Simulation and optimization model of cold chain logistics delivery under crowdsourcing mode[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2666-2675. | |
6 | 杜琛, 李怡靖. 基于客户满意度和最小损耗的冷链配送路径问题研究[J]. 工业工程与管理, 2020, 25(6): 163-171. |
Du Chen, Li Yijing. Research on cold chain distribution path problem based on customer satisfaction and minimum loss[J]. Industrial Engineering and Management, 2020, 25(6): 163-171. | |
7 | Song Meixian, Li Junqing, Han Yunqi, et al. Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics[J]. Applied Soft Computing,2020, 95(2): 106561. |
8 | 潘茜茜, 干宏程. 考虑碳排放的冷链物流配送路径优化研究[J]. 数学的实践与认识, 2016, 46(2): 62-68. |
Pan Xixi, Gan Hongcheng. Study on cold chain logistics distribution path optimization of considering carbon emissions[J]. Practice and Understanding of Mathematics, 2016, 46(2): 62-68. | |
9 | 方文婷, 艾时钟, 王晴, 等.基于混合蚁群算法的冷链物流配送路径优化研究[J]. 中国管理科学, 2019, 27(11): 107-115. |
Fang Wenting, Ai Shizhong, Wang Qing, et al. Research on cold chain logistics distribution path optimization based on hybrid ant colony algorithm[J]. Chinese Journal of Management Science,2019,27(11): 107-115. | |
10 | Zhang Liyi, Minglang Tseng, Wang Chinghsin, et al. Low-carbon cold chain logistics using ribonucleic aci-dant colony optimization algorithm[J]. Journal of Cleaner Production, 2019, 233(1): 169-180. |
11 | 康凯, 韩杰, 普玮, 等. 生鲜农产品冷链物流低碳配送路径优化研究[J]. 计算机工程与应用, 2019, 55(2): 259-265. |
Kang Kai, Han Jie, Pu Wei, et al. Optimization research on cold chain distribution routes considering carbon emissions for fresh agricultural products[J]. Computer Engineering and Applications, 2019, 55(2): 259-265. | |
12 | 鲍春玲,张世斌.考虑碳排放的冷链物流联合配送路径优化[J].工业工程与管理,2018, 23(5): 95-100+107. |
Bao Chunling, Zhang Shibin.Route optimization of cold chain logistics in joint distribution: with consideration of carbon emission[J]. Industrial Engineering and Management, 2018, 23(5): 95-100+107. | |
13 | Alkaabneh F, Diabat A, Gao H O. Benders decomposition for the inventory vehicle routing problem with perishable products and environmental costs[J]. Computers & Operations Research, 2020, 113(1): 104751 . |
14 | Zulvia F E, Renjieh Kuo, Nugroho D Y. A manyobjective gradient evolution algorithm for solving agreen vehicle routing problem with time windows and time dependency for perishable products[J]. Journal of Cleaner Production, 2020, 242(1): 118428. |
15 | 王宁, 胡大伟, 徐杰, 等.基于客户价值和满意度的城市冷链物流时变路径问题[J]. 中国公路学报, 2021, 34(9): 297-308. |
Wang Ning, Hu Dawei, Xu Jie, et al. Timedependent vehicle routing of urban cold-chain logistics based on customer value and satisfaction[J]. China Journal of Highway and Transport, 2021, 34(9):297-308. | |
16 | 王敏. 基于遗传算法的冷链物流网络节点选址研究[D]. 湖南大学, 2010. |
Wang Min. Genetic algorithm based cold chain logistics network node location research [D]. Hunan University, 2010. | |
17 | Barth M, Younglove T, Scora G. Development of a heavy-duty diesel modal emissions and fuel consumption model[R]. Working Paper, UC Berkeley: California Partners for Advanced Transportation Technology, 2005. |
18 | Fukasawa R, He Qie, Song Yongjia. A disjunctive convex programming approach to the pollutionrouting problem[J]. Transportation Research Part B: Methodological, 2016, 94(12): 61-79. |
19 | Toro E M, Franco J F, Echeverri M G, et al. A multiobjective model for the green capacitated location-routing problem considering environmental impact[J].Computers & Industrial Engineering, 2017, 110(8): 114-125. |
20 | Tang Jiafu, Pan Zhendong, Fung R Y K, et al. Vehicle routing problem with fuzzy time windows[J]. Fuzzy Sets and Systems, 2009, 160(5): 683-695. |
21 | Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182-197. |
22 | 陈久梅, 李英娟, 胡婷, 等. 开放式带时间窗车辆路径问题及变邻域搜索算法[J]. 计算机集成制造系统, 2021, 27(10): 3014-3025. |
Chen Jiumei, Li Yingjuan, Hu Ting, et al. Solving open vehicle routing problem with time windows based on variable neighborhood search algorithm[J].Computer Integrated Manufacturing Systems, 2021, 27(10): 3014-3025. |
[1] | GAO Jia-jing, ZHEN Lu. Research on Routing Problem for Joint Delivery System Based on Multiple Trucks and Robots [J]. Chinese Journal of Management Science, 2023, 31(3): 48-57. |
[2] | LI Yang, FAN Hou-ming, ZHANG Xiao-nan. A Periodic Optimization Model and Solution for Capacitated Vehicle Routing Problem with Dynamic Requests [J]. Chinese Journal of Management Science, 2022, 30(8): 254-266. |
[3] | WANG Yong, ZHANG Jie, LIU Yong, XU Mao-zeng. Optimization of Fresh Goods Multi-Center Vehicle Routing Problem Based on Resource Sharing and Temperature Control [J]. Chinese Journal of Management Science, 2022, 30(11): 272-285. |
[4] | REN Hui, WANG Dong-yu. Emergency Materials Reserve Strategies Considering Expected Redeployment Based on Cloud Services [J]. Chinese Journal of Management Science, 2020, 28(3): 31-39. |
[5] | LI Qian, TAO Sha, ZHOU Xiao-yuan, SHENG Zhao-han. Time-Cost Trade-off Optimization of Construction Project Considering Workspace Interference [J]. Chinese Journal of Management Science, 2019, 27(10): 170-178. |
[6] | WANG Zheng, ZHANG Jun, WANG Xu-ping. A Modified Variable Neighborhood Search Algorithm for the Multi Depot Vehicle Routing Problem with Time Windows [J]. Chinese Journal of Management Science, 2011, 19(2): 99-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|