1 |
Markowitz H. Portfolio selection[J]. Journal of Finance,1952,7(1):77-91.
|
2 |
Markowitz H M. Portfolio Selection: Efficient Diversification of Investments [M]. New York,Wiley: 1959.
|
3 |
Zhang Peng, Dang Shili. The weighted lower and upper admissible mean downside semi-variance portfolio selection[J]. International Journal of Fuzzy Systems, 2021,23(6):1775-1788.
|
4 |
姚海祥,姜灵敏,马庆华.不允许买空时的均值-下方风险投资组合选择——基于非参数估计方法[J].数理统计与管理,2015,34(6):1077-1086.
|
|
Yao Haixiang, Jiang Lingmin, Ma Qinghua. Mean-downside risk portfolio selection without short selling: based on nonparametric estimation[J]. Journal of Applied Statistics and Management, 2015, 34(6):1077-1086.
|
5 |
Yan Wei, Miao Rong, Li Shurong. Multi-period semi-variance portfolio selection model and numerical solution[J]. Applied Mathematics and Computation, 2007, 194(1):128-134.
|
6 |
张鹏,李影,曾永泉.现实约束下多阶段模糊投资组合的时间一致性策略研究[J].中国管理科学, 2022. DOI:10.16381/j.cnki.issn1003-207x.2020.1759 .
doi: 10.16381/j.cnki.issn1003-207x.2020.1759
|
|
Zhang Peng, Li Ying, Zeng Yongquan. Time-consistent strategy for the multiperiod possibilistic portfolio selection with real constraints[J]. Chinese Journal of Management Science, 2022. DOI:10.16381/j.cnki.issn1003-207x.2020.1759 .
doi: 10.16381/j.cnki.issn1003-207x.2020.1759
|
7 |
Guerard J B, Markowitz H, Xu Ganlin. Earnings forecasting in a global stock selection model and efficient portfolio construction and management[J]. International Journal of Forecasting. 2015,31(2):550-560.
|
8 |
Wang Wuyu, Li Weizi, Zhang Ning, et al. Portfolio formation with preselection using deep learning from long-term financial data[J]. Expert Systems with Applications. 2020, 143: 113042.
|
9 |
Lin Chiming, Huang J J, Gen M, et al. Recurrent neural network for dynamic portfolio selection[J].Applied Mathematics and Computation, 2006, 175(2):1139-1146.
|
10 |
Thenmozhi M, Sarath Chand G. Forecasting stock returns based on information transmission across global markets using support vector machines[J]. Neural Computing and Applications, 2016, 27(4):805-824.
|
11 |
Krauss C. Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500[J]. European Journal of Operational Research, 2017(2): 689-702.
|
12 |
Freitas F D, Souza A, Almeida A. Prediction-based portfolio optimization model using neural networks[J]. Neurocomputing, 2009, 72(10-12):2155-2170.
|
13 |
Day M Y, Lin Jianting. Artificial intelligence for ETF market prediction and portfolio optimization[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Canada, August 27-30, 2019, IEEE, 2019: 1026-1033.
|
14 |
Fischer T, Krauss C. Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research, 2018, 270(2): 654-669.
|
15 |
Lee S I, Yoo S J. Threshold-based portfolio: the role of the threshold and its applications[J]. Journal of Supercomputing, 2018, 76(10): 8040-8057.
|
16 |
Wong S. Stock price prediction model based on the short-term trending of KNN method[C]//Proceedings of the 2020 7th International Conference on Information Science and Control Engineering, Changsha, China, June 7, 2020, IEEE: 1355-1360.
|
17 |
Paiva F D, Cardoso R T N, Hanaoka G P, et al. Decision-making for financial trading: a fusion approach of machine learning and portfolio selection[J]. Expert Systems with Applications, 2019, 115: 635-655.
|
18 |
Ayala J, García-Torres M, Noguera J, et al. Technical analysis strategy optimization using a machine learning approach in stock market indices[J]. Knowledge-Based Systems, 2021, 225(6):107119.
|
19 |
Ma Yilin, Han Ruizhu, Wang Weizhong. Portfolio optimization with return prediction using deep learning and machine learning[J]. Expert Systems with Applications. 2021, 165: 113973.
|
20 |
Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, August,13-17, 2016: 785-794.
|
21 |
Hongjoong K. Mean-variance portfolio optimization with stock return prediction using XGBoost[J]. Economic Computation and Economic Cybernetics Studies and Research, 2021, 55(4): 5-20.
|
22 |
Chen Wei, Zhang Haoyu, Mehlawat M K, et al. Mean-variance portfolio optimization using machine learning:based stock price prediction[J]. Applied Soft Computing, 2021, 100: 106-943.
|
23 |
Cortes C, Vapnik V. Support-vector networks. Mach Learn[J], 1995, 20(3):273-297.
|
24 |
Pan Jia, Manocha D. Bi-level locality sensitive hashing for k-nearest neighbor computation[C]//Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, Washington D C, America, April 01-05, 2012, IEEE, 2012: 378-389.
|
25 |
张鹏. 可计算的投资组合模型与优化方法研究[D]. 武汉: 华中科技大学, 2006.
|
|
Zhang Peng. The studying on the models and optimal methods of the computable selection [D].Wuhan: Huazhong University of Science and Technology, 2006.
|
26 |
Yang Li, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice[J]. Neurocomputing, 2020, 415: 295-316.
|
27 |
张鹏. 不允许卖空情况下均值-方差和均值-VaR投资组合比较研究[J]. 中国管理科学, 2008(4): 30-35.
|
|
Zhang Peng. The comparison between mean-variance and mean-VaR portfolio models without short sales[J]. Chinese Journal of Management Science, 2008,16(4):30-35.
|
28 |
Ballings M, Van den Poel D, Hespeels N, et al. Evaluating multiple classifiers for stock price direction prediction[J]. Expert Systems with Applications, 2015;42(20):7046-7056.
|