Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (2): 152-165.doi: 10.16381/j.cnki.issn1003-207x.2021.1602
Previous Articles Next Articles
Qi Zhou1,Zhongfei Li2(),Baijun Deng3
Received:
2021-08-13
Revised:
2022-06-23
Online:
2024-02-25
Published:
2024-03-06
Contact:
Zhongfei Li
E-mail:lizf6@sustech.edu.cn
CLC Number:
Qi Zhou,Zhongfei Li,Baijun Deng. Industry Allocation, Clustering Degree and Fund Performance[J]. Chinese Journal of Management Science, 2024, 32(2): 152-165.
"
变量 | 平均值 | 标准差 | 分位点 | ||||
---|---|---|---|---|---|---|---|
1th | 25th | 50th | 75th | 99th | |||
Panel A: 基金层面 | |||||||
Fund net return | 0.0161 | 0.0738 | -0.2009 | -0.0240 | 0.0157 | 0.0538 | 0.2047 |
Fund net alpha (1) | 0.0088 | 0.0365 | -0.0795 | -0.0115 | 0.0071 | 0.0272 | 0.1131 |
Fund net alpha (3) | 0.0076 | 0.0287 | -0.0635 | -0.0084 | 0.0069 | 0.0231 | 0.0853 |
Fund net alpha (5) | 0.0071 | 0.0269 | -0.0590 | -0.0078 | 0.0063 | 0.0212 | 0.0796 |
Fund size( | 0.1977 | 0.3198 | 0.0001 | 0.0159 | 0.0752 | 0.2417 | 1.5055 |
IC1 | 0.1037 | 0.1202 | 0.0016 | 0.0447 | 0.0724 | 0.1133 | 0.7414 |
IC2 | 0.1030 | 0.1201 | 0.0015 | 0.0441 | 0.0716 | 0.1125 | 0.7401 |
NIC | 0.1151 | 0.1511 | 0.0023 | 0.0478 | 0.0770 | 0.1219 | 0.9068 |
IK | 0.6885 | 0.1934 | 0.2338 | 0.5964 | 0.7730 | 0.8258 | 0.9116 |
Panel B: 行业层面 | |||||||
K | 0.6752 | 0.0466 | 0.5686 | 0.6411 | 0.6729 | 0.7095 | 0.7607 |
SoW | 0.3669 | 0.2356 | 0.0623 | 0.1150 | 0.3722 | 0.5905 | 0.7617 |
H | 0.0074 | 0.0058 | 0.0031 | 0.0034 | 0.0057 | 0.0078 | 0.0237 |
"
变量 | 基金超额收益率 | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Lagged | 0.0017 (1.90) | 0.0011 (1.16) | 0.0007 (0.10) | -0.0122 (-1.43) | -0.0103 (-1.23) | -0.0112 (-1.35) | -0.0099 (-1.05) | -0.0101 (-1.18) |
Lagged | -0.0849*** (-4.25) | -0.0808*** (-4.00) | -0.0937*** (-4.40) | -0.0920*** (-4.32) | -0.0931*** (-4.82) | -0.0936*** (-4.42) | -0.0939*** (-4.91) | |
Lagged Size | -0.0141* (-2.34) | -0.0163** (2.67) | -0.0154* (-2.56) | -0.0170** (-3.16) | -0.0166** (-2.72) | -0.0166*** (-3.16) | ||
Lagged SoW | -0.2713*** (-5.39) | -0.2619*** (-5.21) | -0.2613*** (-5.76) | -0.2724*** (-5.40) | -0.2721*** (-6.16) | |||
Lagged | 0.0320*** (5.89) | 0.0331*** (6.13) | ||||||
Lagged | 0.0071 (1.34) | |||||||
Lagged | 0.0168** (2.95) | 0.0170*** (3.73) | ||||||
Lagged | -0.0009 (-0.21) | |||||||
Fixed effect (Year and Fund) | √ | √ | √ | √ | √ | √ | √ | √ |
Number of observations | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 |
R-squared | 0.0502 | 0.0507 | 0.0508 | 0.0515 | 0.0524 | 0.0526 | 0.0518 | 0.0521 |
"
变量 | 基金超额收益率 | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Lagged | 0.0332*** (6.13) | 0.0478** (2.73) | 0.0500* (2.48) | 0.0488* (2.43) | 0.0506* (2.50) | 0.0502* (2.49) | 0.0586** (2.88) | 0.059** (2.93) |
Lagged | -0.0136 (-0.75) | -0.0170 (-0.71) | -0.0116 (-0.48) | -0.0136 (-0.56) | -0.0140 (-0.58) | -0.0254 (-1.05) | -0.0282 (-1.15) | |
Lagged | 0.0517* (2.18) | 0.047** (3.03) | 0.0557* (3.20) | 0.0484* (2.06) | 0.0457** (2.99) | 0.0389** (2.84) | ||
Lagged | -0.0469 (-1.10) | -0.0564 (-1.31) | -0.0490 (-1.15) | -0.0506 (-1.18) | -0.0447 (-1.03) | |||
Lagged | -0.0605*** (-3.32) | -0.0597** (-2.97) | ||||||
Lagged Size | -0.0155** (-2.59) | -0.0177** (-2.92) | ||||||
Lagged SoW | -0.2144*** (-5. 21) | -0.2440*** (-4.74) | ||||||
Fixed effect (Year and Fund) | √ | √ | √ | √ | √ | √ | √ | √ |
Number of observations | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 |
R-squared | 0.0512 | 0.0514 | 0.0612 | 0.0615 | 0.0617 | 0.0617 | 0.0622 | 0.0625 |
"
变量 | 基金超额收益率 | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Lagged | 0.0271*** (5.09) | 0.0255** (2.73) | 0.0291* (2.49) | 0.0305* (2.50) | 0.0296* (2.45) | 0.0282* (2.38) | 0.0226* (2.10) | 0.0199* (1.97) |
Lagged | 0.0017 (0.13) | -0.0006 (-0.04) | -0.0011 (-0.08) | -0.0003 (-0.02) | 0.0003 (0.02) | 0.0043 (0.28) | 0.0059 (0.38) | |
Lagged | 0.0021* (2.27) | 0.0133* (2.29) | 0.0203* (2.43) | 0.0148* (2.32) | 0.0139* (2.30) | 0.0068* (2.15) | ||
Lagged | -0.0107 (-0.25) | -0.0186 (-0.0435) | -0.0132 (-0.31) | -0.01527 (-0.35) | -0.0088 (-0.20) | |||
Lagged | 0.0189 (1.23) | -0.0512** (-3.11) | ||||||
Lagged Size | -0.0158** (-2.63) | -0.0179** (-2.94) | ||||||
Lagged SoW | -0.2075*** (-5.06) | -0.2403*** (-4.67) | ||||||
Fixed effect (Year and Fund) | √ | √ | √ | √ | √ | √ | √ | √ |
Number of observations | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 | 50038 |
R-squared | 0.0509 | 0.0509 | 0.0569 | 0.0569 | 0.0569 | 0.0611 | 0.0614 | 0.0617 |
"
Concentration策略 | Clustering策略 | |||||
---|---|---|---|---|---|---|
均值 | 标准差 | 夏普比例 | 均值 | 标准差 | 夏普比例 | |
Panel A:基金收益(筛选10只基金) | ||||||
High | 0.0332(3.1980) | 0.0731(13.6306) | 0.4601(3.0598) | 0.0277(3.1109) | 0.0655(11.3973) | 0.4429(3.8426) |
Low | 0.0104(1.6715) | 0.0558(12.2509) | 0.2200(1.8963) | 0.0088(1.2921) | 0.0352(11.6775) | 0.2430(1.5128) |
High-Low | 0.0228(3.4685) | 0.0173(5.1827) | 0.2401(2.2645) | 0.0189(3.4894) | 0.0303(0.1074) | 0.1999(3.6184) |
Panel A:基金收益(筛选5只基金) | ||||||
High | 0.0359(3.2757) | 0.0716(12.4498) | 0.6708(2.6992) | 0.0323(3.3039) | 0.0649(11.3506) | 0.6045(3.1980) |
Low | 0.0089(1.5605) | 0.0554(11.4131) | 0.2155(1.7623) | 0.0091(1.3568) | 0.0656(10.9835) | 0.1701(1.5605) |
High-Low | 0.0261(3.6548) | 0.0162(4.5564) | 0.4553(2.4417) | 0.0232(3.5094) | -0.0007(-0.1969) | 0.4344(3.1164) |
Panel A:基金收益(筛选20只基金) | ||||||
High | 0.0286(2.8430) | 0.0740(15.3760) | 0.3622(2.8460) | 0.0241(2.8477) | 0.0745(11.5253) | 0.3967(2.6103) |
Low | 0.0105(1.6886) | 0.0558(12.1393) | 0.2040(1.7515) | 0.0088(1.3123) | 0.0646(12.3169) | 0.1565(1.4274) |
High-Low | 0.0181(2.9568) | 0.0182(7.3358) | 0.1582(2.1437) | 0.0153(3.4119) | 0.0099(0.0257) | 0.2402(3.8335) |
Panel A:基金收益(筛选30只基金) | ||||||
High | 0.0270(2.7111) | 0.0717(15.7350) | 0.3575(2.7769) | 0.0219(2.6820) | 0.0639(11.5442) | 0.3428(2.5552) |
Low | 0.0106(1.6715) | 0.0570(11.8819) | 0.1996(1.6994) | 0.0087(1.2701) | 0.0663(12.9657) | 0.1326(1.2322) |
High-Low | 0.0164(2.6220) | 0.0147(6.2005) | 0.1579(2.0546) | 0.0132(3.3618) | -0.0024(-1.2835) | 0.2102(3.7987) |
1 | Amihud Y, Goyenko R. Mutual fund's R 2 as predictor of performance[J]. The Review of Financial Studies, 2013, 26(3): 667-694. |
2 | Berk J B, Green R C. Mutual fund flows and performance in rational markets[J]. Journal of political economy, 2004, 112(6): 1269-1295. |
3 | Berk J B, Binsbergen J H V. Measuring skill in the mutual fund industry[J]. Journal of Financial Economics, 2015,118(1):1-20. |
4 | Claessens S, Laeven L. What drives bank competition? Some international evidence[J]. Money Credit Bank, 2003, 36: 563-583. |
5 | Cohen L, Frazzini A, Malloy C. The small world of investing: board connections and mutual fund returns[J]. Journal of Political Economy, 2008, 116(5): 951-979. |
6 | Cohen L, Frazzini A, Malloy C. Sell-side school ties[J]. The Journal of Finance, 2010, 65(4): 1409-1437. |
7 | Cremers K J M, Nair V B, Peyer U. Takeover defenses and competition: the role of stakeholders[J]. Journal of Empirical Legal Studies, 2008, 5(4):791-818. |
8 | Feldman D, Saxena K, Xu J R. Is the active fund management industry concentrated enough?[J].Journal of Financial Economics, 2020, 136(1): 23-43. |
9 | Grønborg N S, Lunde A, Timmermann A, et al. Picking funds with confidence[J]. Journal of Financial Economics, 2021, 139(1): 1-28. |
10 | Guercio D D, Reuter J. Mutual fund performance and the incentive to generate alpha[J]. The Journal of Finance, 2014, 69(4): 1673-1704. |
11 | Hoberg G, Kumar N, Prabhala N. Mutual fund competition, managerial skill, and alpha persistence[J]. The Review of Financial Studies, 2018, 31(5): 1896-1929. |
12 | Kacperczyk M, Seru A. Fund manager use of public information: new evidence on managerial skills[J]. The Journal of Finance, 2007, 62(2): 485-528. |
13 | Kacperczyk M, Sialm C, Zheng L. On the industry concentration of actively managed equity mutual funds[J]. The Journal of Finance, 2005, 60(4): 1983-2011. |
14 | Kacperczyk M, Sialm C, Zheng L. Unobserved actions of mutual funds[J]. The Review of Financial Studies, 2008, 21(6): 2379-2416. |
15 | Levy A, Livingston M. The gains from diversification reconsidered: transaction costs and superior information[J]. Financial Markets, Institutions, and Instruments,1995, 4(3): 1-60. |
16 | Massa M, Patgiri R. Incentives and mutual fund performance: higher performance or just higher risk taking?[J]. The Review of Financial Studies, 2009, 22(5): 1777-1815. |
17 | Nanda V, Wang Z J, Zheng L. Family values and the star phenomenon: strategies of mutual fund families[J]. The Review of Financial Studies, 2004, 17(3): 667-698. |
18 | Pastor Ľ, Stambaugh R F, Taylor L A. Do funds make more when they trade more?[J]. The Journal of Finance, 2017, 72(4): 1483-1528. |
19 | Pastor Ľ, Stambaugh R F, Taylor L A. Fund tradeoffs[J]. Journal of Financial Economics, 2020, 138(3): 614-634. |
20 | Pastor Ľ, Stambaugh R F, Taylor L A. Scale and skill in active management[J]. Journal of Financial Economics, 2015, 116(1): 23-45. |
21 | Pastor L, Stambaugh R F. On the size of the active management industry[J]. Journal of Political Economy, 2012, 120(4): 740-781. |
22 | Rossi A G, Blake D, Timmermann A, et al. Network centrality and delegated investment performance[J]. Journal of Financial Economics, 2018, 128(1): 183-206. |
23 | Rossi A G, Blake D, Timmermann A, et al. Network centrality and pension fund performance[R]. CFR Working Paper, 2015. |
24 | Simutin M. Standing out in the fund family: deviation from a family portfolio predicts mutual fund performance[J]. Available at SSRN 1920357, 2013. |
25 | 郭春松, 蔡庆丰, 汤旸玚. 基金家族的业绩关联与溢出效应——基于共同技能效应与共同噪声效应的实证研究[J]. 金融研究, 2015(5): 162-177. |
Guo C S, Cai Q F, Tang Y Y. Performance correlations of the fund family and its effect on fund spillover effect: Empirical evidence based on the common skill effect and common noise effect[J]. Journal of Financial Research, 2015(5): 162-177. | |
26 | 孔东民, 李捷瑜, 邢精平,等. 投资组合的行业集中度与基金业绩研究[J]. 管理评论, 2010, 22(4): 17-25. |
Kong D M, Li J Y, Xing J P, et al. Studies on the industry concentration and performance of mutual funds[J]. Management Review, 2010, 22(4): 17-25. | |
27 | 孔高文,胡林峰,孔东民,等.基金持股的创新偏好与基金业绩研究[J].管理科学学报,2019,22(12): 70-83. |
Kong G W, Hu L F, Kong D M, et al. Does innovative preferences improve mutual funds performances[J]. Journal of Management Science in China, 2019, 22(12): 70-83. | |
28 | 刘莎莎, 刘玉珍, 唐涯.信息优势、风险调整与基金业绩[J]. 管理世界, 2013(8): 67-76. |
Liu S S, Liu Y Z, Ta Y. Information advantage, risk adjustment and fund performance[J]. Journal of Management World, 2013(8): 67-76. | |
29 | 罗荣华, 田正磊, 方红艳. “和而不群” 还是 “卓尔不群”?——基于基金网络信息使用的视角[J]. 金融研究, 2020, 482(8): 188-206. |
Luo R H, Tian Z L, Fang H Y. Fund managers’ skill and use of shared information from the social network[J]. Journal of Financial Research, 2020, 482(8): 188-206. | |
30 | 罗荣华, 兰伟, 杨云红. 基金的主动性管理提升了业绩吗?[J]. 金融研究, 2011(10): 127-139. |
Luo R H, Lan W, Yang Y H. Does active management of funds improve performance[J]. Journal of Financial Research, 2011(10): 127-139. | |
31 | 陆蓉, 陈百助, 徐龙炳,等. 基金业绩与投资者的选择——中国开放式基金赎回异常现象的研究[J].经济研究, 2007(6): 39-50. |
Lu R, Chen B Z, Xu L B, et al. Fund performance and investors’ choice——analysis on the redemption puzzle of open-end fund market in China[J]. Economic Research Journal, 2007(6): 39-50. | |
32 | 孟庆斌, 吴卫星, 于上尧. 基金经理职业忧虑与其投资风格[J]. 经济研究, 2015, 50(3): 115-130. |
Meng Q B, Wu W X, Yu S Y. Fund managers’ career concern and their investment style[J]. Economic Research Journal, 2015, 50(3): 115-130. | |
33 | 申宇, 赵静梅, 何欣. 校友关系网络、基金投资业绩与“小圈子”效应[J]. 经济学(季刊), 2016, 15(1): 403-428. |
Shen Y, Zhao J M, He X. Alumni networks, funds’ performance and “Small World” effect[J]. China Economic Quarterly, 2016, 15(1): 403-428. | |
34 | 苏辛, 周勇. 流动性、流动性风险与基金业绩——基于我国开放式基金的实证研究[J]. 中国管理科学, 2015, 23(7): 1-9. |
Su X, Zhou Y. Liquidity, liquidity risk and performance——A empirical study on Chinese open-end mutual funds[J]. Chinese Journal of Management Science, 2015, 23(7): 1-9. | |
35 | 徐信忠, 张璐, 张峥. 行业配置的羊群现象——中国开放式基金的实证研究[J]. 金融研究, 2011(4): 178-190. |
Xu X Z, Zhang L, Zhang Z. The herd phenomenon of industry allocation: an empirical study of Chinese open-end funds[J]. Journal of Financial Research, 2011(4): 178-190. | |
36 | 杨继平, 石晨晓, Chiew Daniel, 等.基于期望效用-熵模型的基金评级方法及其在中国基金评级中的应用[J]. 中国管理科学, 2019, 27(12): 1-10. |
Yang J P, Shi C X, Chiew D, et al. A fund ratings approach based on EU-E decision model and its application in China’s fund ratings[J]. Chinese Journal of Management Science, 2019, 27(12): 1-10. | |
37 | 赵秀娟, 汪寿阳. 基金经理在多大程度上影响了基金业绩?——业绩与个人特征的实证检验[J]. 管理评论, 2010, 22(1):3-12. |
Zhao X J, Wang S Y. How much do the managers affect funds performance?——empirical study of performance and personal characteristics[J]. Management Review, 2010, 22(1):3-12. | |
38 | 周正峰. 基于集成方法和风险平价的FOF投资实证研究[D]. 南京:南京大学,2018. |
Zhou Z F. Empirical research on FOF investment based on ensemble methods and risk parity[D].Nanjing: Nanjing University, 2018. |
[1] | XIAO Yuan. Enterprise Promise Management and its Model Study [J]. Chinese Journal of Management Science, 2006, (4): 134-140. |
[2] | ZHUANG Ya-ming, QIN Xia. The War of Attrition and Its Model Research in Business Enterprise Competition [J]. Chinese Journal of Management Science, 2005, (4): 115-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|