1 |
潘燕春,马晓晨. C&T和政府补贴下的绿色技术选择和产品定价研究[J].中国管理科学,2024,32(2):99-107.
|
|
Pan Y C, Ma X C. Green technology selection and product pricing research under C&T and government subsidies[J]. Chinese Journal of Management Science,2024,32(2):99-107.
|
2 |
Lin B, Jia Z. Economic, energy and environmental impact of coal-to-electricity policy in China: a dynamic recursive CGE study[J]. Science of The Total Environment, 2020, 698: 134241.
|
3 |
Pan L Y, Zhou K, Li W Q, et al. Subsidy policy discussion on the hydroelectric power substitution for scattered coal consumption: a case study of sichuan province[J]. Renewable and Sustainable Energy Review, 2019, 108: 539-549.
|
4 |
Zeng Y C, Dong P W, Shi Y Y, et al. Analyzing the co-evolution of green technology diffusion and consumers' pro-environmental attitudes: an agent-based model[J]. Journal of Cleaner Production, 2020, 256: 120384.
|
5 |
张宏伟 . 政策工具及其组合与海上风电技术创新和扩散: 来自德国的考察[J]. 科技进步与对策, 2017, 34(14): 119-125.
|
|
Zhang H W. Policy instrument, policy instr-ument mix and offshore wind power technology innovation and diffusion: the conditions from Germany[J]. Science & Technology Progress and Policy, 2017, 34(14): 119-125.
|
6 |
Shi Y Y, Wei Z X, Shahbaz M, et al. Exploring the dynamics of low-carbon technology diffusion among enterprises: an evolutionary game model on a two-level heterogeneous social network[J]. Energy Economics, 2021, 101: 105399.
|
7 |
Luo G, Liu Y, Zhang L, et al. Do governmental subsidies improve the financial performance of China’s new energy power generation enterprises?[J]. Energy, 227: 120432.
|
8 |
唐啸,胡鞍钢 . 创新绿色现代化: 隧穿环境库兹涅兹曲线[J]. 中国人口·资源与环境, 2018, 28(5): 1-7.
|
|
Tang X, Hu A G. Achieve innovative and ecological modernization: tunneling through the environmental kuznets curve[J]. China Population, Resources and Environment, 2018, 28(5) : 1-7.
|
9 |
汪明月, 李颖明.政府市场规制、产品消费选择和企业绿色技术创新[J].管理工程学报,2021, 35(2): 44-54.
|
|
Wang M Y, Li Y M. Market regulation,product consumption choice and enterprise green technological innovation[J]. Journal of Industrial Engineering and Engineering Management, 2021, 35(2): 44-54.
|
10 |
Chavez R, Yu W, Feng M, et al. The effect of customer-centric green supply chain management on operational performance and customer satisfaction[J]. Business Strategy Environment, 2016, 25(3): 205-220.
|
11 |
Ozdemir O, Hobbs B F, Van H M, et al. Capacity vs energy subsidies for promoting renewable investment: benefits and costs for the EU power market[J]. Energy Policy, 2020, 137: 111166.
|
12 |
Mahmoudi R, Rasti-Barzoki M. Sustainable supply chains under government intervention with a real-world case study: an evolutionary game theoretic approach[J]. Computer Industry Engineering, 2018, 116: 130-143.
|
13 |
Gu H, Liu Z, Qing Q. Optimal electric vehicle production strategy under subsidy and battery recycling[J]. Energy Policy, 2017, 109: 579-589.
|
14 |
Zhao R, Zhou X, Han J, et al. For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation[J]. Technology Forecast and Social Change, 2016, 112: 262-274.
|
15 |
Wang L, Zheng J J. Research on low-carbon diffusion considering the game among enterprises in the complex network context[J]. Journal of Cleaner Production, 2019, 210: 1-11.
|
16 |
Zhuge C X, Wei B R, Dong C J, et al. Exploring the future electric vehicle market and its impacts with an agent-based spatial integrated framework: a case study of Beijing, China[J]. Journal of Cleaner Production, 2019, 221: 710-737.
|
17 |
Li J J, Jiao J L, Tang Y S. An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network[J]. Energy Policy, 2019, 129: 1-12.
|
18 |
Encarnaç˜ao S, Santos F P, Santos F C, et al. Paths to the adoption of electric vehicles: an evolutionary game theoretical approach[J]. Transportation Research Part B: Methodological, 2018, 113: 24-33.
|
19 |
Li J J, Jiao J L, Tang Y S. Analysis of the impact of policies intervention on electric vehicles adoption considering information transmission—based on consumer network model[J]. Energy Policy, 2020, 144: 111560.
|
20 |
Strazzabosco A, Conrad S A, Lant P A, et al. Expert opinion on influential factors driving renewable energy adoption in the water industry[J]. Renewable Energy, 2020, 162: 754-765.
|
21 |
王璐,马庆庆,杨劼,等.基于复杂网络演化博弈的绿色消费者对新能源汽车扩散的影响研究[J].中国管理科学, 2022, 30(4): 74-85.
|
|
Wang l, Ma Q Q, Yang J, et al. Research on the influence of green consumers on the diffusion of new energy vehicles based on complex network evolutionary game[J]. Chinese Journal of Management Science, 2022, 30(4): 74-85.
|
22 |
胡玉真,张耸,等.民航干扰管理—旅客意愿视角[M]. 北京:科学出版社,2022.
|
|
Hu Y Z, Zhang S, et al. Interference management in civil aviation: passenger willingness perspective[M].Beijing: Science Press, 2022.
|
23 |
Zhang H, Li P, Zheng H, et al. Impact of carbon tax on enterprise operation and production strategy for low-carbon products in a co-opetition supply chain[J]. Journal of Cleaner Production, 2021, 287: 125058.
|
24 |
Zhou Y. The role of green customers under competition: a mixed blessing?[J]. Journal of Cleaner Production, 2018, 170: 857866.
|
25 |
Fan R G, Dong L L, Yang W, et al. Study on the optimal supervision strategy of government low-carbon subsidy and the corresponding efficiency and stability in the small-world network context[J]. Journal of Cleaner Production, 2017, 168: 536-550.
|
26 |
Chen F, Wu B, Lou W. An evolutionary analysis on the effect of government policies on green R & D of photovoltaic industry diffusion in complex network[J]. Energy Policy, 2021, 152: 112217.
|
27 |
Sreekumar R. Bhaskaran V K. Effort, revenue, and cost sharing mechanisms for collaborative new product development[J]. Management Science, 2009, 55(7):1152-1169.
|
28 |
曾炳昕,丁庆国,朱磊.碳市场中市场势力对减排技术采用的影响[J].中国管理科学, 2022, 30(2): 38-47.
|
|
Zeng B X, Ding G Q, Zhu L. The effect of market power in carbon market on emission abatement technology adoption[J]. Chinese Journal of Management Science, 2022, 30(2): 38-47.
|
29 |
Li F Y, Cao X, Ou R. A network-based evolutionary analysis of the diffusion of cleaner energy substitution in enterprises: the roles of PEST factors[J]. Energy Policy, 2021, 156: 112385.
|
30 |
Meng Q C, Wang Y T, Zhang Z, et al. Supply chain green innovation subsidy strategy considering consumer heterogeneity[J]. Journal of Cleaner Production, 2021, 281: 125199.
|
31 |
Coria J. Taxes, permits, and the diffusion of a new technology[J]. Resource and Energy Economics, 2009, 31(4): 249-271.
|
32 |
Chen L Q, Gao M. Novel information interaction rule for municipal household waste classification behavior based on an evolving scale-free network[J]. Resources Conservation and Recycling, 2021, 168: 105445.
|
33 |
孙耀吾,卫英平. 高技术企业联盟知识扩散研究——基于小世界网络的视角[J].管理科学学报, 2011, 14(12): 17-26.
|
|
Sun Y W, Wei Y P. Study on knowledge diffusion of high-tech enterprise alliance from the small-world network perspective[J]. Journal of Management Sciences in China, 2011, 14(12): 17-26.
|
34 |
李柏洲,曾经纬,王丹,等. 基于知识行为的企业绿色创新系统协同演化研究[J]. 管理工程学报, 2020, 34(5): 42-52.
|
|
Li B Z, Zeng J W, Wang D, et al. Research on co-evolution of enterprise green innovation system based on knowledge behavior[J]. Journal of Industrial Engineering/Engineering Management, 2020, 34(5): 42-52.
|
35 |
Tian Y H, Govindan K, Zhu Q H. A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinese manufacturers[J]. Journal of Cleaner Production, 2014, 80: 96-105.
|
36 |
Zhong M, Liu Q, Zeng A, et al. An effects analysis of China’s metal mineral resource tax reform: a heterogeneous dynamic multi-regional CGE appraisal[J]. Resources Policy, 2018, 58: 303–313.
|
37 |
Fan R G, Dong L L. The dynamic analysis and simulation of government subsidy strategies in low-carbon diffusion considering the behavior of heterogeneous agents[J]. Energy Policy, 2018, 117: 252-262.
|