Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (3): 299-312.doi: 10.16381/j.cnki.issn1003-207x.2023.0396
Previous Articles Next Articles
Huiwen Lu,Xinghua Fang(),Mingshun Song,Yujia Deng,Jia Huang
Received:
2023-03-11
Revised:
2023-06-21
Online:
2024-03-25
Published:
2024-03-25
Contact:
Xinghua Fang
E-mail:xinghuafang@cjlu.edu.cn
CLC Number:
Huiwen Lu,Xinghua Fang,Mingshun Song,Yujia Deng,Jia Huang. Quality Abnormal Pattern Recognition Based on Relative Entropy[J]. Chinese Journal of Management Science, 2024, 32(3): 299-312.
"
组号 | 区间 | |||||
---|---|---|---|---|---|---|
1 | (663.65,663.75] | 0.025 | 0.075 | 0.025 | 0.1125 | 0.025 |
2 | (663.75,663.85] | 0.0625 | 0.1 | 0.05 | 0.175 | 0.0375 |
3 | (663.85,663.95] | 0.1125 | 0.1125 | 0.0875 | 0.2125 | 0.05 |
4 | (663.95,664.05] | 0.1875 | 0.1375 | 0.125 | 0.1875 | 0.075 |
5 | (664.05,664.15] | 0.225 | 0.15 | 0.1625 | 0.125 | 0.125 |
6 | (664.15,664.25] | 0.1875 | 0.1375 | 0.1125 | 0.075 | 0.1875 |
7 | (664.25,664.35] | 0.1125 | 0.1125 | 0.1375 | 0.05 | 0.2125 |
8 | (664.35,664.45] | 0.0625 | 0.1 | 0.175 | 0.0375 | 0.175 |
9 | (664.45,664.55] | 0.025 | 0.075 | 0.125 | 0.025 | 0.1125 |
"
组号 | 区间 | 正常型样本 | 平顶型样本 | 双峰型样本 | 偏左峰型样本 | 偏右峰型样本 |
---|---|---|---|---|---|---|
1 | (663.65,663.75] | 0.025 | 0.0875 | 0.025 | 0.1 | 0.025 |
2 | (663.75,663.85] | 0.05 | 0.1 | 0.0375 | 0.1625 | 0.0375 |
3 | (663.85,663.95] | 0.125 | 0.1125 | 0.0875 | 0.225 | 0.05 |
4 | (663.95,664.05] | 0.175 | 0.125 | 0.125 | 0.175 | 0.075 |
5 | (664.05,664.15] | 0.225 | 0.15 | 0.225 | 0.1375 | 0.1125 |
6 | (664.15,664.25] | 0.175 | 0.125 | 0.15 | 0.0875 | 0.2 |
7 | (664.25,664.35] | 0.125 | 0.1125 | 0.1 | 0.05 | 0.225 |
8 | (664.35,664.45] | 0.0625 | 0.1 | 0.2 | 0.0375 | 0.1625 |
9 | (664.45,664.55] | 0.0375 | 0.0875 | 0.05 | 0.025 | 0.1125 |
"
实际 生产状态 | 组别 | 各异常分布模式下参考概率密度函数 | |||||
---|---|---|---|---|---|---|---|
正常型 | 1 | 0.1471 | 3.0491 | 0.5426 | 0.7555 | 0.5717 | |
2 | 0.0676 | 3.5682 | 0.4536 | 0.9082 | 0.6138 | ||
3 | 0.6173 | 3.2701 | 0.8085 | 1.9990 | 0.3854 | ||
平顶型 | 1 | 10.9016 | 0.4409 | 8.1541 | 5.9751 | 4.5511 | |
2 | 6.9010 | 0.1209 | 4.9365 | 3.9987 | 3.2251 | ||
3 | 6.9487 | 0.1534 | 5.4575 | 4.0236 | 2.5367 | ||
双峰型 | 1 | 12.8379 | 4.4870 | 0.0592 | 2.5017 | 2.2468 | |
2 | 12.5993 | 4.2614 | 0.0616 | 2.5801 | 2.1333 | ||
3 | 15.2103 | 4.3650 | 0.1749 | 2.7952 | 2.8101 | ||
偏左峰型 | 1 | 1.1832 | 3.6800 | 1.2999 | 0.5131 | 2.1266 | |
2 | 1.3484 | 3.8035 | 1.4694 | 0.6042 | 2.3609 | ||
3 | 0.9237 | 4.6595 | 1.1970 | 0.4783 | 2.0006 | ||
偏右峰型 | 1 | 0.9931 | 2.3243 | 1.3585 | 2.1843 | 0.3822 | |
2 | 1.2937 | 2.3823 | 1.1193 | 2.6115 | 0.4612 | ||
3 | 0.7496 | 4.3715 | 0.9244 | 2.6061 | 0.3126 |
"
典型实际生产状态 | 对比方法 | ||||||
---|---|---|---|---|---|---|---|
正常型 | 相关系数 | 0.9899 | 0.9710 | 0.4943 | 0.2696 | 0.3411 | |
余弦相似度 | 0.9970 | 0.9462 | 0.8884 | 0.8090 | 0.8276 | ||
欧式距离 | 0.0306 | 0.1287 | 0.1794 | 0.2398 | 0.2278 | ||
平顶型 | 相关系数 | 0.9742 | 0.9687 | 0.4873 | 0.2921 | 0.2921 | |
余弦相似度 | 0.9215 | 0.9974 | 0.9408 | 0.8750 | 0.8750 | ||
欧式距离 | 0.1551 | 0.0250 | 0.1225 | 0.1871 | 0.1871 | ||
双峰型 | 相关系数 | 0.6885 | 0.7208 | 0.8289 | -0.1686 | 0.5839 | |
余弦相似度 | 0.9144 | 0.9188 | 0.9559 | 0.6962 | 0.8918 | ||
欧式距离 | 0.1620 | 0.1541 | 0.1146 | 0.3021 | 0.1803 | ||
偏左峰型 | 相关系数 | 0.3826 | 0.4019 | -0.3754 | 0.9877 | -0.6469 | |
余弦相似度 | 0.8337 | 0.8876 | 0.7241 | 0.9969 | 0.5807 | ||
欧式距离 | 0.2250 | 0.1777 | 0.2784 | 0.0306 | 0.3536 | ||
偏右峰型 | 相关系数 | 0.2955 | 0.3125 | 0.6811 | -0.6993 | 0.9929 | |
余弦相似度 | 0.8041 | 0.8684 | 0.9244 | 0.5518 | 0.9980 | ||
欧式距离 | 0.2456 | 0.1936 | 0.1490 | 0.3678 | 0.0250 |
1 | 刘玉敏, 刘莉. 基于统计特征的动态过程质量异常模式识别[J]. 统计与决策, 2017, 19: 32-36. |
Liu Y M, Liu L. Dynamic process of quality abnormal pattern recognition based on statistical features[J]. Statistics & Decision, 2017, 19: 32-36. | |
2 | Bakir S T. Distribution-free quality control charts based on signed-rank-like statistics[J]. Communications in Statistics, 2006, 35(4): 743-757. |
3 | Page E S. Continuous inspection scheme[J]. Biometrika, 1954, 41(1): 100-104. |
4 | Roberts S W. Control chart tests based on geometric moving averages[J]. Technometrics, 1959, 1: 239-250. |
5 | Park S H, Kim S B. Multivariate control charts that combine the Hotelling T 2 and classification algorithms [J]. Journal of the Operational Research Society, 2019, 70(6): 889-897. |
6 | 杨铭, 宋明顺, 方兴华. 基于经济性原则的控制图构建及仿真[J]. 统计与决策, 2020, 36(2): 29-33. |
Yang M, Song M S, Fang X H. Construction and simulation of control chart based on economic principle[J]. Statistics & Decision, 2020, 36(2): 29-33. | |
7 | Haghtalab S, Xanthopoulos P, Madani K. A robust unsupervised consensus control chart pattern recognition framework[J]. Expert Systems with Applications, 2015, 42: 6767-6776. |
8 | Ünlü R. A robust data simulation technique to improve early detection performance of a classifier in control chart pattern recognition[J]. Information Sciences, 2021, 548: 18-36. |
9 | Maged A, Xie M. Recognition of abnormal patterns in industrial processes with variable window size via convolutional neural networks and AdaBoost[J]. Journal of Intelligent Manufacturing, 2022, 34(4): 1-23. |
10 | Fuqua D, Razzaghi T. A cost-sensitive convolution neural network learning for control chart pattern recognition[J]. Expert Systems with Applications, 2020, 150: 113275. |
11 | 李丽丽, 陈琨, 高建民, 等. 采用优化概率神经网络的质量异常识别方法[J]. 计算机集成制造系统, 2021, 27(10): 2813-2820. |
Li L L, Chen K, Gao J M, et al. Quality anomaly recognition method based on optimized probabilistic neural network[J]. Computer Integrated Manufacturing Systems, 2021, 27(10): 2813-2820. | |
12 | Cuentas S, Garcia E, Peñabaena-Niebles R. An SVM-GA based monitoring system for pattern recognition of autocorrelated processes[J]. Soft Computing, 2022, 26: 5159-5178. |
13 | Ünlü R. Cost-oriented LSTM method for possible expansion of control charting signals[J]. Computers & Industrial Engineering, 2021, 154: 107163. |
14 | Zaman M, Hassan A. Improved statistical features-based control chart patterns recognition using ANFIS with fuzzy clustering[J]. Neural Computing and Applications, 2019, 31: 5935-5949. |
15 | 万育微,朱波,伍常亮,等.利用随机森林识别二元自相关过程异常[J].制造业自动化, 2020, 42(2): 60-64. |
Wan Y W, Zhu B, Wu C L, et al. Using random forest for out-of-control patterns recognition in bivariate autocorrelated process[J]. Manufacturing Automation, 2020, 42(2): 60-64. | |
16 | Zan T, Liu Z H, Su Z F, et al. Statistical process control with intelligence based on the deep learning model[J]. Applied Sciences, 2019, 10(1): 308. |
17 | Wang M, Zan T, Fei R Y. Statistical process control with intelligence using fuzzy ART neural networks[J]. Frontiers of Mechanical Engineering in China, 2010, 5(2): 149-156. |
18 | Lu Z Y, Wang M Q, Dai W. A condition monitoring approach for machining process based on control chart pattern recognition with dynamically-sized observation windows[J]. Computer & Industrial Engineering, 2020, 142: 106360. |
19 | Zaman M, Hassan A. Improved statistical features-based control chart patterns recognition using ANFIS with fuzzy clustering[J]. Neural Computing and Applications, 2019, 31: 5935-5949. |
20 | Ferracuti F, Giantomassi A, Iarlori S, et al. Electric motor defects diagnosis based on kernel density estimation and Kullback-Leibler divergence in quality control scenario[J]. Engineering Applications of Artificial Intelligence, 2015, 44: 25-32. |
21 | Zhou X J, Dennis L, Hu X L, et al. Robust parameter design based on Kullback-Leibler divergence[J]. Computer & Industry Engineering, 2019, 135: 913-921. |
22 | 田晟, 曾莉莉. 基于改进核密度估计的电动出租车快速充电行为研究[J].交通运输系统工程与信息, 2021, 21(4): 221-229. |
Tian S, Zeng L L. Fast charging behavior of electric taxi based on improved kernel density estimation[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 221-229. | |
23 | 宋平凡, 谭常春, 祁毓. 基于相对熵方法的长寿债券定价研究[J]. 中国管理科学, 2019, 27(5): 32-41. |
Song P F, Tan C C, Qi Y. Pricing longevity bond with relative entropy approach[J]. Chinese Journal of Management Science, 2019, 27(5): 32-41. | |
24 | 崔东虎,赵亚慧,崔荣一.基于相对熵的KNN文本分类方法的研究[J].延边大学学报(自然科学版), 2021, 47(2): 175-179. |
Cui D H, Zhao Y H, Cui R Y. Research on text classification of K-nearest neighbor algorithm based on relative entropy[J]. Journal of Yanbian University(Natural Science Edition), 2021, 47(2): 175-179. | |
25 | 王印松,丁梦婷,孙天舒,等.基于改进相对熵的控制系统性能评价方法[J].控制工程, 2023,30(4):577-582. |
Wang Y S, Ding M T, Sun T S, et al. Relative entropy based approach to performance assessment of control systems[J]. Control Engineering of China, 2021, 30(4):577-582. | |
26 | 何会民. 基于随机游走模型和KL-divergence的聚类算法[J]. 计算机工程, 2008(16): 224-226. |
He H M. Clustering algorithm based on random walk model and KL-divergence[J]. Computer Engineering, 2008(16): 224-226. | |
27 | 高效, 敬东, 陈钢.采用相对熵评价雷达相对系统误差估值[J].雷达科学与技术, 2020, 18(4): 443-446. |
Gao X, Jing D, Chen G. Application of relative entropy to evaluation of relative system error of radar[J]. Radar Science and Technology, 2020, 18(4): 443-446. | |
28 | Rosnani G, Aulia I, Dyah P. Application of quality function deployment (QFD) method in meeting customer satisfaction in the bookshelf industry[J]. IOP Conference Series: Materials Science and Engineering, 2020, 1003(1): 012005. |
29 | Abramson I S. On bandwidth variation in kernel estimates-a square root law[J]. The Annals of Statistics, 1982, 10(4): 1217-1223. |
30 | 晁宇晴. 利用频率(频数)直方图分析零件关键尺寸质量特性[J].机械工业标准化与质量, 2006(3): 17-19+28. |
Chao Y Q. Analysis of critical dimension and quality characteristics of parts using frequency (frequency) histogram[J]. Machinery Industry Standardization & Quality, 2006(3): 17-19+28. | |
31 | Yang J W, Yang M S. A control chart pattern recognition system using a statistical correlation coefficient method[J]. Computers & Industrial Engineering, 2005, 48(2): 205-221. |
32 | 郭远晶, 魏燕定, 金晓航, 等. 频谱密度函数相似性比较的齿轮箱故障诊断[J]. 振动工程学报, 2018, 31(1): 157-164. |
Guo Y J, Wei Y D, Jin X H, et al. Gearbox fault diagnosis using similarity comparision of frequency spectrum density function[J]. Journal of Vibration Engineering, 2018, 31(1): 157-164. | |
33 | 张文豪, 施展.基于欧式距离与灰色预测模型的机床主轴剩余寿命研究[J].制造业自动化,2019, 41(3): 93-96. |
Zhang W H, Shi Z. Research on residual life of machine tool spindle based on euclidean distance and grey prediction model[J]. Manufacturing Automation, 2019, 41(3): 93-96. | |
34 | 周伟, 潘海鹏, 吴平, 等. 基于DPCA和KL散度的微小故障检测方法[J]. 传感器与微系统, 2020, 39(3): 135-138. |
Zhou W, Pan H P, Wu P, et al. Tiny fault detection method based on DPCA and KL divergence[J]. Transducer and Microsystem Technologies, 2020, 39(3): 135-138. |
[1] | YANG Huan, LV Cheng-chao. Ten Years of “New Medical Reform”: The Regional Differences, Dynamic Evolution and Influencing Factors of China’s Medical and Health Service Efficiency [J]. Chinese Journal of Management Science, 2023, 31(2): 162-172. |
[2] | DIAO Shu-jie, KUANG Hai-bo, MENG Bin, SHI Bao-feng. Evolutionary Game Analysis of LSSC Service Quality Control Strategy Based on Prospect Theory [J]. Chinese Journal of Management Science, 2021, 29(7): 33-45. |
[3] | ZHANG Qiao-ke, CHEN Hong-zhuan. Incentive Strategy for Complex Product Quality Control Based on Quality Awareness [J]. Chinese Journal of Management Science, 2021, 29(6): 105-114. |
[4] | WANG Dao-ping, ZHAO Chao, CHENG Yan-ping. Study on Supply Chain Network Equilibrium Considering Quality Control by Retailer and Risk-aversion [J]. Chinese Journal of Management Science, 2019, 27(6): 76-87. |
[5] | SONG Ping-fan, TAN Chang-chun, QI Yu. Pricing Longevity Bond with Relative Entropy Approach [J]. Chinese Journal of Management Science, 2019, 27(5): 32-41. |
[6] | SHEN Qiang, XU Li-li, YANG Wei-min, LIU Xiao-bing, HOU Yun-xian. The Optimization of Quality Control in Dual Channel Supply Chains with Uncertain Demand [J]. Chinese Journal of Management Science, 2019, 27(3): 128-136. |
[7] | GUO Ben-hai, CHU Jia-na, ZHAO Ying-mei. GERT Network Model About the Whole Dairy Industry Chain Quality Control Dominated by the Core Enterprise [J]. Chinese Journal of Management Science, 2019, 27(1): 120-130. |
[8] | PENG Zi-jin, XU Wei-jun. Universal Portfolio Strategy Based on Forecasting Price [J]. Chinese Journal of Management Science, 2018, 26(9): 1-10. |
[9] | SUN Jian-hui, ZHANG Hai-bo, ZHAO Li-ming. Quality Control Behavior in the Three-echelon Equipment Manufacturing Supply Chain [J]. Chinese Journal of Management Science, 2018, 26(3): 71-83. |
[10] | ZHU Li-long, GUO Peng-fei, SUN Shu-hui. Products Quality Control Strategy of Supply Chain in the Condition of Three Types of Mixed Distribution Channel [J]. Chinese Journal of Management Science, 2017, 25(3): 111-120. |
[11] | CHEN Zhan-duo, QIN Xue-zhi. A Study on Violation Behavior Control of “Making in Own Factory by Others” Type Manufacturing Outsourcing Based on Game [J]. Chinese Journal of Management Science, 2016, 24(6): 78-89. |
[12] | HONG Jiang-tao, HUANG Pei. Research on Quality Coordination in Supply Chain Based on Differential Game [J]. Chinese Journal of Management Science, 2016, 24(2): 100-107. |
[13] | SHEN Qiang, YANG Wei-min, LIU Xiao-bing, HOU Yun-xian. The Optimization of Quality Control in four Levels of Supply Chain Based on the Two Kinds of Strategies [J]. Chinese Journal of Management Science, 2016, 24(10): 52-59. |
[14] | LIU Xiao-di, ZHU Jian-jun, LIU Si-feng. Group Decision-Making Method with Uncertain Preference Information on Alternatives by Interval Number Relative Entropy [J]. Chinese Journal of Management Science, 2014, 22(6): 134-140. |
[15] | LIU Zhuo-jun, LI Xiao-ming. An Approach for Unusual Transaction Detection Based on Customer Behavior Time Series Analysis [J]. Chinese Journal of Management Science, 2014, 22(12): 102-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|