1 |
张贵生,张信东.基于近邻互信息的SVM-GARCH股票价格预测模型研究[J]. 中国管理科学, 2016, 24(9):11-20.
|
|
Zhang G S, Zhang X D. A SVM-GARCH model for stock price forecasting based on neighborhood mutual information[J]. Chinese Journal of Management Science, 2016, 24(9):11-20.
|
2 |
王燕,郭元凯.改进的XGBoost模型在股票预测中的应用[J]. 计算机工程与应用, 2019,55 (20): 202-207.
|
|
Wang Y, Guo Y K. Application of improved XGBoost model in stock forecasting[J]. Computer Engineering and Applications, 2019, 55(20):202-207.
|
3 |
乔若羽.基于神经网络的股票预测模型[J].运筹与管理,2019,28(10):132-140.
|
|
Qiao R Y. Stock prediction model based on neural network[J]. Operations Research and Management Science, 2019, 28(10):132-140.
|
4 |
Baek Y, Kim H Y. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module[J]. Expert Systems with Applications, 2018, 113(15): 457-480.
|
5 |
欧阳红兵,黄亢,闫洪举. 基于LSTM神经网络的金融时间序列预测[J].中国管理科学,2020,28(4):27-35.
|
|
Ouyang H B, Huang K, Yan H J. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4):27-35.
|
6 |
Lin Y, Yan Y, Xu J, et al. Forecasting stock index price using the CEEMDAN-LSTM model[J]. The North American Journal of Economics and Finance, 2021, 57: 101421.
|
7 |
方雪清,吴春胤,俞守华,等.基于EEMD-LSTM的农产品价格短期预测模型研究[J].中国管理科学,2021,29(11):68-77.
|
|
Fang X Q, Wu C Y, Yu S H, et al.Research on short-term forecast model of agricultural product price based on EEMD-LSTM[J].Chinese Journal of Management Science, 2021,29(11):68-77.
|
8 |
Frank M Z, Sanati A. How does the stock market absorb shocks?[J]. Journal of Financial Economics, 2018, 129(1):136-153.
|
9 |
Chen H, De P, Hu Y J, et al. H Wisdom of crowds: The value of stock opinions transmitted through social media[J]. Review of Financial Studies, 2014, 27(5):1367-1403.
|
10 |
Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market[J]. Journal of Computational Science, 2011, 2(1):1-8.
|
11 |
孙书娜,孙谦.投资者关注和股市表现——基于雪球关注度的研究[J]. 管理科学学报, 2018, 21(6):60-71.
|
|
Sun S N, Sun Q. Investor attention and market performance: Evidence based on “Xueqiu attention”[J]. Journal of Management Sciences in China, 2018, 21(6):60-71.
|
12 |
石善冲,朱颖楠,赵志刚,等.基于微信文本挖掘的投资者情绪与股票市场表现[J].系统工程理论与实践,2018,38(6):1404-1412.
|
|
Shi S C, Zhu Y N, Zhao Z G, et al. The investor sentiment mined from WeChat text and stock market performance[J]. Systems Engineering-Theory & Practice, 2018, 38(6):1404-1412.
|
13 |
姜富伟,孟令超,唐国豪.媒体文本情绪与股票回报预测[J].经济学(季刊),2021,21(4):1323-1344.
|
|
Jiang F W, Meng L C, Tang G H. Media textual sentiment and Chinese stock return predictability[J]. China Economic Quarterly, 2021, 21(4):1323-1344.
|
14 |
Loughran T, McDonald B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks[J]. The Journal of finance, 2011, 66(1): 35-65.
|
15 |
尹海员,寇文娟.基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J].中国管理科学, 2024, 32(4): 38-47.
|
|
Yi H Y, Kou W J. Investor sentiment based on naive bayes method and its impact on stock idiosyncratic Risk[J]. Chinese Journal of Management Science, 2024, 32(4): 38-47.
|
16 |
Kumbure M M, Lohrmann C, Luukka P, et al. Machine learning techniques and data for stock market forecasting: A literature review[J]. Expert Systems with Applications, 2022,197: 116659.
|
17 |
杨青,王晨蔚.基于深度学习LSTM神经网络的全球股票指数预测研究[J].统计研究, 2019, 36(3):65-77.
|
|
Yang Q, Wang C W. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research, 2019, 36(3):65-77.
|
18 |
Diebold F, Mariano R. Comparing predictive accuracy [J]. Journal of Business and Economic Statistics 1995, 13(3):253-263.
|
19 |
Niu H, Xu K, Wang W. A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network[J]. Applied Intelligence, 2020, 50: 4296-4309.
|