1 |
Lee H L, Padmanabhan V, Whang S, et al. Information distortion in a supply chain: The bullwhip effect[J]. Management Science, 1997, 43(4): 546-558.
|
2 |
Lee H L, Padmanabhan V, Whang S, et al. The bullwhip effect in supply chains[J]. Sloan Management Review, 1997, 38(3): 93-102.
|
3 |
Forrester J W. Industrial dynamics[M]. Cambridge Mass: MIT Press, 1961.
|
4 |
Sterman J D. Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment[J]. Management Science, 1989, 35(3): 321-339.
|
5 |
Cachon G P, Fisher M. Supply chain inventory management and the value of shared information[J]. Management Science, 2000, 46(8): 1032-1048.
|
6 |
Chen F, Drezner Z, Ryan J K, et al. Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information[J]. Management Science, 2000, 46(3): 436-443.
|
7 |
Dejonckheere J, Disney S M, Lambrecht M, et al. The impact of information enrichment on the bullwhip effect in supply chains: A control engineering perspective[J]. European Journal of Operational Research, 2004, 153(3): 727-750.
|
8 |
Odonnell T, Maguire L, Mcivor R, et al. Minimizing the bullwhip effect in a supply chain using genetic algorithms[J]. International Journal of Production Research, 2006, 44(8): 1523-1543.
|
9 |
Badakhshan E, Humphreys P, Maguire L, et al. Using simulation-based system dynamics and genetic algorithms to reduce the cash flow bullwhip in the supply chain[J]. International Journal of Production Research, 2020,58(17): 1-27.
|
10 |
Tsay A A, Lovejoy W S. Quantity flexibility contracts and supply chain performance[J]. Manufacturing & Service Operations Management, 1999, 1(2): 89-111.
|
11 |
Eppen G D, Iyer A V. Backup agreements in fashion buying—the value of upstream flexibility[J]. Management Science, 1997, 43(11): 1469-1484.
|
12 |
Disney S M, Towill D R. The effect of vendor managed inventory (VMI) dynamics on the bullwhip effect in supply chains[J]. International Journal of Production Economics, 2003, 85(2): 199-215.
|
13 |
陈佳莉, 郭春香. 基于卡尔曼滤波需求预测的牛鞭效应研究 [J]. 管理学报, 2019, 16(5): 775-782.
|
|
Chen J L, Guo C X. Research on bullwhip effect based on demand forecast with kalman filter[J]. Chinese Journal of Management, 2019, 16(5): 775-782.
|
14 |
尤建新, 隋明刚, 霍佳震. 闭环供应链牛鞭效应分析[J]. 系统工程理论与实践, 2007(12): 111-116.
|
|
You J X, Sui M G, Huo J Z. Bullwhip effect in closed-loop supply chain[J]. Systems Engineering-Theory & Practice, 2007(12): 111-116.
|
15 |
唐亮, 靖可. H∞鲁棒控制下动态供应链系统牛鞭效应优化[J].系统工程理论与实践, 2012, 32(1): 155-163.
|
|
Tang L, Jing K. Bullwhip effect optimization of dynamic supply chain system based on H∞ robust control[J]. Systems Engineering—Theory & Practice, 2012, 32(1): 155-163.
|
16 |
陈长彬, 盛鑫, 梁永奕. 一种减少供应链牛鞭效应的资产组合管理方法[J]. 管理科学学报, 2016, 19(6): 33-48.
|
|
Chen C B, Sheng X, Liang Y Y. Reducing bullwhip effect in supply chain: A portfolio management approach[J]. Journal of Management Sciences in China, 2016, 19(6): 33-48.
|
17 |
Carbonneau R, Laframboise K, Vahidov R. Application of machine learning techniques for supply chain demand forecasting[J]. European Journal of Operational Research, 2008, 184(3): 1140-1154.
|
18 |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
19 |
Kong F, Li J. The promotion strategy of supply chain flexibility based on deep belief network[J]. Applied Intelligence, 2018, 48(5): 1394-1405.
|
20 |
张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 385-397+410.
|
|
Zhang R, Li W P, Mo T. Review of deep learning[J]. Information and Control, 2018,47(4):385-397+410.
|
21 |
Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint arXiv, 2013: 1312.5602.
|
22 |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
|
23 |
Oroojlooyjadid A, Nazari M R, Snyder L V, et al. A deep q-network for the beer game: Deep reinforcement learning for inventory optimization[J]. Manufacturing & Service Operations Management, 2022, 24(1): 285-304.
|
24 |
Chien C F, Lin Y S, Lin S K. Deep reinforcement learning for selecting demand forecast models to empower Industry 3.5 and an empirical study for a semiconductor component distributor[J]. International Journal of Production Research, 2020, 58(9): 2784-2804.
|