Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (1): 311-322.doi: 10.16381/j.cnki.issn1003-207x.2024.1099
Previous Articles Next Articles
Xingyi Li1, Zhongfei Li2(), Qiqian Li2, Yujun Liu3, Wenjin Tang2
Received:
2024-06-30
Revised:
2024-11-14
Online:
2025-01-25
Published:
2025-02-14
Contact:
Zhongfei Li
E-mail:lizf6@sustech.edu.cn
CLC Number:
Xingyi Li, Zhongfei Li, Qiqian Li, Yujun Liu, Wenjin Tang. A Review of Research on Asset Return Prediction Based on Machine Learning[J]. Chinese Journal of Management Science, 2025, 33(1): 311-322.
1 | Martin I, Nagel S. Market efficiency in the age of big data[J]. Journal of Financial Economics, 2022, 145(1): 154-177. |
2 | Murray S, Xia Y, Xiao H. Charting by machines[J]. Journal of Financial Economics, 2024, 153: 103791. |
3 | Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5): 359-366. |
4 | Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on typical tabular data?[J]. Advances in Neural Information Processing Systems, 2022, 35: 507-520. |
5 | Welch I, Goyal A. A comprehensive look at the empirical performance of equity premium prediction[J]. The Review of Financial Studies, 2008, 21(4): 1455-1508. |
6 | Campbell J, Thompson S. Predicting excess stock returns out of sample: Can anything beat the historical average?[J]. The Review of Financial Studies, 2008, 21(4): 1509-1531. |
7 | Rapach D, Strauss J, Zhou G. Out-of-sample equity premium prediction: Combination forecasts and links to the real economy[J]. The Review of Financial Studies, 2010, 23(2): 821-862. |
8 | Hollstein F, Prokopczuk M. Managing the market portfolio[J]. Management Science, 2023, 69(6): 3675-3696. |
9 | Feng G, He J. Factor investing: A Bayesian hierarchical approach[J]. Journal of Econometrics, 2022, 230(1): 183-200. |
10 | Hou K, Xue C, Zhang L. Replicating anomalies[J]. The Review of Financial Studies, 2020, 33(5): 2019-2133. |
11 | McLean R, Pontiff J. Does academic research destroy stock return predictability?[J]. The Journal of Finance, 2016, 71(1): 5-32. |
12 | Lewellen J. The cross section of expected stock returns[R]. Working Paper, Tuck School of Business, 2014. |
13 | Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. The Review of Financial Studies, 2020, 33(5): 2223-2273. |
14 | Freyberger J, Neuhierl A, Weber M. Dissecting characteristics nonparametrically[J]. The Review of Financial Studies, 2020, 33(5): 2326-2377. |
15 | Ludvigson S, Ng S. The empirical risk-return relation: A factor analysis approach[J]. Journal of Financial Economics, 2007, 83(1): 171-222. |
16 | Kelly B, Pruitt S. Market expectations in the cross‐section of present values[J]. The Journal of Finance, 2013, 68(5): 1721-1756. |
17 | Huang D, Jiang F, Li K, et al. Scaled PCA: A new approach to dimension reduction[J]. Management Science, 2022, 68(3): 1678-1695. |
18 | Chen J, Tang G, Yao J, et al. Investor Attention and Stock Returns[J]. Journal of Financial and Quantitative Analysis, 2022, 57(2): 455-484. |
19 | Light N, Maslov D, Rytchkov O. Aggregation of information about the cross section of stock returns: A latent variable approach[J]. The Review of Financial Studies, 2017, 30(4): 1339-1381. |
20 | Baker M, Wurgler J. Investor sentiment and the cross‐section of stock returns[J]. The Journal of Finance, 2006, 61(4): 1645-1680. |
21 | Giglio S, Xiu D, Zhang D. Prediction when factors are weak[R]. Working Paper, University of Chicago, 2023. |
22 | Huang D, Li J, Wang L. Are disagreements agreeable? Evidence from information aggregation[J]. Journal of Financial Economics, 2021, 141(1): 83-101. |
23 | Kelly B, Malamud S, Pedersen L. Principal portfolios[J]. The Journal of Finance, 2023, 78(1): 347-387. |
24 | Yan J, Yu J. Cross-stock momentum and factor momentum[J]. Journal of Financial Economics, 2023, 150(2): 103716. |
25 | He S, Yuan M, Zhou G. principal portfolios: The multi-signal case[R]. Working Paper, SSRN, 2022. |
26 | Moritz B, Zimmermann T. Tree-based conditional portfolio sorts: The relation between past and future stock returns[R]. Working Paper, SSRN, 2016. |
27 | Rossi A. Predicting stock market returns with machine learning[R]. Working Paper, Georgetown University, 2018. |
28 | Gu S, Kelly B, Xiu D. Autoencoder asset pricing models[J]. Journal of Econometrics, 2021, 222(1): 429-450. |
29 | Feng G, He J, Polson N, et al. Deep learning in characteristics-sorted factor models[J]. Journal of Financial and Quantitative Analysis, 2024, 59(7): 3001-3036. |
30 | Chen L, Pelger M, Zhu J. Deep learning in asset pricing[J]. Management Science, 2024, 70(2): 714-750. |
31 | Cong L, Tang K, Wang J, et al. AlphaPortfolio: Direct construction through deep reinforcement learning and interpretable AI[R]. Working Paper, SSRN, 2021. |
32 | Guijarro-Ordonez J, Pelger M, Zanotti G. Deep learning statistical arbitrage[R]. Working Paper, arXiv, 2021. |
33 | Loughran T, McDonald B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks[J]. The Journal of Finance, 2011, 66(1): 35-65. |
34 | Calomiris C, Mamaysky H. How news and its context drive risk and returns around the world[J]. Journal of Financial Economics, 2019, 133(2): 299-336. |
35 | Jiang F, Lee J, Martin X, et al. Manager sentiment and stock returns[J]. Journal of Financial Economics, 2019, 132(1): 126-149. |
36 | Price S, Doran J, Peterson D, et al. Earnings conference calls and stock returns: The incremental informativeness of textual tone[J]. Journal of Banking & Finance, 2012, 36(4): 992-1011. |
37 | Schmeling M, Wagner C. Does central bank tone move asset prices[J]. Journal of Financial and Quantitative Analysis, 2024, DOI: 10.1017/S0022109024000073 . |
38 | 汪昌云, 武佳薇. 媒体语气、投资者情绪与IPO定价[J]. 金融研究, 2015 (9): 174-189. |
Wang C Y, Wu J W. Media tone, Investor sentiment and IPO pricing[J]. Journal of Financial Research, 2015, 423(9): 174-189. | |
39 | You J, Zhang B, Zhang L. Who captures the power of the pen[J]. The Review of Financial Studies, 2018, 31(1): 43-96. |
40 | 姚加权, 冯绪, 王赞钧. 语调、情绪及市场影响: 基于金融情绪词典[J]. 管理科学学报, 2021, 24(5):26-46. |
Yao J Q, Feng X, Wang Z J, et al. Tone, sentiment and market impacts: The construction of Chinese sentiment dictionary in finance[J]. Journal of Management Sciences in China, 2021, 24(5):26-46. | |
41 | 姜富伟, 孟令超, 唐国豪. 媒体文本情绪与股票回报预测[J]. 经济学(季刊), 2021, 21(4): 1323-1344. |
Jiang F W, Meng L C, Tang G H. Media textual sentiment and Chinese stock return predictability[J]. China Economic Quarterly, 2021, 21(4): 1323-1344. | |
42 | Antweiler W, Frank M. Is all that talk just noise? The information content of internet stock message boards[J]. The Journal of Finance, 2004, 59(3): 1259-1294. |
43 | Frankel R, Jennings J, Lee J. Disclosure sentiment: Machine learning vs. dictionary methods[J]. Management Science, 2022, 68(7): 5514-5532. |
44 | 部慧, 解峥, 李佳鸿. 基于股评的投资者情绪对股票市场的影响[J]. 管理科学学报, 2018, 21(4): 86-101. |
Bu H, Jie Z, Li J H. Investor sentiment extracted from internet stock message boards and its effect on Chinese stock market[J]. Journal of Management Sciences in China, 2018, 21(4): 86-101. | |
45 | 马黎珺, 伊志宏, 张澈. 廉价交谈还是言之有据?——分析师报告文本的信息含量研究[J]. 管理世界, 2019, 35(7): 182-200. |
Ma L J, Yi Z H, Zhang C. Cheap talk or well-founded evidence? A study on the information content of analyst report texts[J]. Journal of Management World, 2019, 35(7): 182-200. | |
46 | 范小云, 王业东, 王道平, 等. 不同来源金融文本信息含量的异质性分析——基于混合式文本情绪测度方法[J]. 管理世界, 2022, 38(10): 78-101. |
Fan X Y, Wang Y D, Wang D P, et al. Heterogeneity analysis of information content of financial texts from different sources: Based on a hybrid text sentiment measurement method[J]. Journal of Management World, 2022, 38(10): 78-101. | |
47 | Azimi M, Agrawal A. Is positive sentiment in corporate annual reports informative? Evidence from deep learning[J]. The Review of Asset Pricing Studies, 2021, 11(4): 762-805. |
48 | Heston S, Sinha N. News vs. sentiment: Predicting stock returns from news stories[J]. Financial Analysts Journal, 2017, 73(3): 67-83. |
49 | 钱宇, 李子饶, 李强. 在线社区支持倾向对股市收益和波动的影响[J]. 管理科学学报, 2021, 23(2): 141-155. |
Qian Y, Li Z R, Li Q. Impact of online community support tendencies on returns and volatility in Chinese stock market[J]. Journal of Management Sciences in China, 2021, 23(2): 141-155. | |
50 | Jegadeesh N, Wu D. Word power: A new approach for content analysis[J]. Journal of Financial Economics, 2013, 110(3): 712-729. |
51 | Garcia D, Hu X, Rohrer M. The colour of finance words[J]. Journal of Financial Economics, 2023, 147(3): 525-549. |
52 | Obaid K, Pukthuanthong K. A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news[J]. Journal of Financial Economics, 2022, 144(1): 273-297. |
53 | Jiang J, Kelly B, Xiu D. (Re-) Imag(in)ing price trends[J]. The Journal of Finance, 2023, 78(6): 3193-3249. |
54 | Mayew W, Venkatachalam M. The power of voice: Managerial affective states and future firm performance[J]. The Journal of Finance, 2012, 67(1): 1-43. |
55 | Gorodnichenko Y, Pham T, Talavera O. The voice of monetary policy[J]. American Economic Review, 2023, 113(2): 548-584. |
56 | Breaban A, Noussair C. Emotional state and market behavior[J]. Review of Finance, 2018, 22(1): 279-309. |
57 | Chen Y, Kelly B, Xiu D. Expected returns and large language models[R]. Working Paper, SSRN, 2022. |
58 | Tan L, Wu H, Zhang X. Large language models and return prediction in China[R]. Working Paper, SSRN, 2023. |
59 | Lopez-Lira A, Tang Y. Can chatgpt forecast stock price movements? Return predictability and large language models[R]. Working Paper, arXiv, 2023. |
60 | Chen J, Tang G, Zhou G, et al. ChatGPT, Stock market predictability and links to the macroeconomy[R]. Working Paper, SSRN, 2023. |
61 | Huang A, Wang H, Yang Y. FinBERT: A large language model for extracting information from financial text[J]. Contemporary Accounting Research, 2023, 40(2): 806-841. |
62 | 姜富伟, 刘雨旻, 孟令超. 大语言模型、文本情绪与金融市场[J]. 管理世界, 2024, 40(8): 42-64. |
Jiang F W, Liu Y M, Meng L C. Large language models, text sentiment, and financial markets[J]. Journal of Management World, 2024, 40(8): 42-64. | |
63 | Guo X, Hu X, Tam O. Artificial intelligence and machine learning in fund performance evaluation: A review[M]. Singapore: World Scientific Publishing, 2023. |
64 | Xia Y. Real-time predictability of mutual fund performance predictors[R]. Working Paper, SSRN, 2021. |
65 | DeMiguel V, Gil-Bazo J, Nogales F, et al. Machine learning and fund characteristics help to select mutual funds with positive alpha[J]. Journal of Financial Economics, 2023, 150(3): 103737. |
66 | Li B, Rossi A. Selecting mutual funds from the stocks they hold: A machine learning approach[R]. Working Paper, SSRN, 2021. |
67 | 李仁宇, 叶子谦. 基于机器学习的基金收益预测[J]. 统计与决策, 2023, 39(11): 156-161. |
Li R Y, Ye Z Q. Fund return prediction based on machine learning[J]. Statistics & Decision, 2023, 39(11): 156-161. | |
68 | Zhang A. Uncovering mutual fund private information with machine learning[R]. Working Paper, SSRN, 2021. |
69 | Eriksen D, Hagen N. Enhancing fund selection using supervised machine learning: Evidence from the nordic mutual fund market[D]. Norway: Norwegian School of Economics, 2022. |
70 | Kaniel R, Lin Z, Pelger M, et al. Machine-learning the skill of mutual fund managers[J]. Journal of Financial Economics, 2023, 150(1): 94-138. |
71 | Chu N, Dao B, Pham N, et al. Predicting mutual funds’performance using deep learning and ensemble techniques[R]. Working Paper, arXiv, 2023. |
72 | Cheng S, Lu R, Zhang X. What should investors care about? mutual fund ratings by analysts vs. machine learning technique[R]. Working Paper, SSRN, 2023. |
73 | Ji S, Kim J, Im H. A comparative study of bitcoin price prediction using deep learning[J]. Mathematics, 2019, 7(10): 898. |
74 | Liu M, Li G, Li J, et al. Forecasting the price of bitcoin using deep learning[J]. Finance Research Letters, 2021, 40: 101755. |
75 | Lahmiri S, Bekiros S. Deep learning forecasting in cryptocurrency high-frequency trading[J]. Cognitive Computation, 2021, 13: 485-487. |
76 | Mallqui D, Fernandes R. Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques[J]. Applied Soft Computing, 2019, 75: 596-606. |
77 | Chen W, Xu H, Jia L, et al. Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants[J]. International Journal of Forecasting, 2021, 37(1): 28-43. |
78 | Jakubik J, Nazemi A, Geyer-Schulz A, et al. Incorporating financial news for forecasting bitcoin prices based on long short-term memory networks[J]. Quantitative Finance, 2022, 23(2): 335-49. |
79 | McNally S, Roche J, Caton S. Predicting the price of bitcoin using machine learning[C]//Proceedings of 2018 26th euromicro international conference on parallel, distributed and network-based processing (PDP), Cambridge, United Kingdom, March 21-23, 2018. |
80 | Chen Z, Li C, Sun W. Bitcoin price prediction using machine learning: An approach to sample dimension engineering[J]. Journal of Computational and Applied Mathematics, 2020, 365: 112395. |
81 | Basher S, Sadorsky P. Forecasting bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?[J]. Machine Learning with Applications, 2022, 9: 100355. |
82 | Kim H, Bock G, Lee G. Predicting ethereum prices with machine learning based on blockchain information[J]. Expert Systems with Applications, 2021, 184: 115480. |
83 | Lahmiri S, Bekiros S. Cryptocurrency forecasting with deep learning chaotic neural networks[J]. Chaos, Solitons & Fractals, 2019, 118: 35-40. |
84 | Alahmari S. Predicting the price of cryptocurrency using support vector regression methods[J]. Journal of Mechanics of Continua and Mathematical Sciences, 2020, 15(4): 313-322. |
85 | Hamayel M, Owda A. A novel cryptocurrency price prediction model using GRU, LSTM and bi-LSTM machine learning algorithms[J]. Ai, 2021, 2(4): 477-496. |
86 | Borges T, Neves R. Ensemble of machine learning algorithms for cryptocurrency investment with different data resampling methods[J]. Applied Soft Computing, 2020, 90: 106187. |
87 | Smuts N. What drives cryptocurrency prices? An investigation of Google trends and telegram sentiment[J]. ACM SIGMETRICS Performance Evaluation Review, 2019, 46(3): 131-134. |
88 | Fang F, Chung W, Ventre C, et al. Ascertaining price formation in cryptocurrency markets with machine learning[J]. The European Journal of Finance, 2024, 30(1): 78-100. |
89 | Sun X, Liu M, Sima Z. A novel cryptocurrency price trend forecasting model based on LightGBM[J]. Finance Research Letters, 2020, 32: 101084. |
90 | Khedr A, Arif I, El-Bannany M, et al. Cryptocurrency price prediction using traditional statistical and machine-learning techniques: A survey[J]. Intelligent Systems in Accounting, Finance and Management, 2021, 28(1): 3-4. |
91 | Sebastião H, Godinho P. Forecasting and trading cryptocurrencies with machine learning under changing market conditions[J]. Financial Innovation, 2021,7: 1-30. |
92 | Akyildirim E, Goncu A, Sensoy A. Prediction of cryptocurrency returns using machine learning[J]. Annals of Operations Research, 2021, 297: 3-36. |
93 | Wang Y, Wang C, Sensoy A, et al. Can investors’informed trading predict cryptocurrency returns? Evidence from machine learning[J]. Research in International Business and Finance, 2022, 62: 101683. |
94 | Liu Y, Li Z, Nekhili R, et al. Forecasting cryptocurrency returns with machine learning[J]. Research in International Business and Finance, 2023, 64: 101905. |
95 | Filippou I, Rapach D, Thimsen C. Cryptocurrency return predictability: A machine-learning analysis[R]. Working Paper, SSRN, 2023. |
96 | Cakici N, Shahzad S, Będowska-Sójka B, et al. Machine learning and the cross-section of cryptocurrency returns[J]. International Review of Financial Analysis, 2024, 94: 103244. |
97 | Li X, Liu Y, Liu Z, et al. Cryptocurrency return prediction: A machine learning analysis[R]. Working Paper, SSRN, 2024. |
98 | Nakano M, Takahashi A, Takahashi S. Bitcoin technical trading with artificial neural network[J]. Physica A: Statistical Mechanics and its Applications, 2018, 510: 587-609. |
99 | Han J, Kim S, Jang M, et al. Using genetic algorithm and NARX neural network to forecast daily bitcoin price[J]. Computational Economics, 2020, 56: 337-353. |
100 | Huang J, Huang W, Ni J. Predicting bitcoin returns using high-dimensional technical indicators[J]. The Journal of Finance and Data Science, 2019, 5(3): 140-55. |
101 | Li X, Liu Z, Yan J. Predicting bitcoin returns by machine learning[R]. Working Paper, SSRN, 2024. |
102 | Feng L, Qi J, Lucey B. Enhancing cryptocurrency market volatility forecasting with daily dynamic tuning strategy[J]. International Review of Financial Analysis, 2024, 94: 103239. |
103 | D’Amato V, Levantesi S, Piscopo G. Deep learning in predicting cryptocurrency volatility[J]. Physica A: Statistical Mechanics and its Applications, 2022, 596: 127158. |
104 | Bianchi D, Büchner M, Tamoni A. Bond risk premiums with machine learning[J]. The Review of Financial Studies, 2021, 34(2): 1046-1089. |
105 | Jiang Y, Liu X, Liu Y, et al. Bond return predictability: Macro factors and machine learning methods[J]. European Financial Management, 2024,30(5):2596-2627. |
106 | Huang J, Shi Z. Machine-learning-based return predictors and the spanning controversy in macro-finance[J]. Management Science, 2023, 69(3): 1780-1804. |
107 | Fan Y, Feng G, Fulop A, et al. Real-time macro information and bond return predictability: a weighted group deep learning approach[R]. Working Paper, SSRN, 2022. |
108 | Huang D, Jiang F, Li K, et al. Are bond returns predictable with real-time macro data[J]. Journal of Econometrics, 2023, 237(2): 105438. |
109 | Lin H, Wu C, Zhou G. Forecasting corporate bond returns with a large set of predictors: An iterated combination approach[J]. Management Science, 2018, 64(9): 4218-4238. |
110 | Bali T, Goyal A, Huang D, et al. Predicting corporate bond returns: Merton meets machine learning[R]. Discussion Paper, Georgetown McDonough, 2020. |
111 | Guo X, Lin H, Wu C, et al. Predictive information in corporate bond yields[J]. Journal of Financial Markets, 2022, 59: 100687. |
112 | Li D, Lu L, Qi Z, et al. International corporate bond market: Uncovering risks using machine learning[R]. Working Paper, SSRN, 2022 |
113 | He X, Feng G, Wang J, et al. Corporate bond pricing via benchmark combination model[R]. Working Paper, SSRN, 2022. |
114 | Kelly B, Palhares D, Pruitt S. Modeling corporate bond returns[J]. The Journal of Finance, 2023, 78(4): 1967-2008. |
[1] | Xuanming Ni,Tiantian Zheng,Huimin Zhao,Kangping Wu. Asset Pricing Based on the Optimal Idiosyncratic Return Factor [J]. Chinese Journal of Management Science, 2024, 32(8): 50-60. |
[2] | Xinnan Lei,Lefan Lin,Binqing Xiao,Honghai Yu. Re-exploration of Small and Micro Enterprises' Default Characteristics Based on Machine Learning Models with SHAP [J]. Chinese Journal of Management Science, 2024, 32(5): 1-12. |
[3] | Qifa Xu, Zezhou Wang, Cuixia Jiang. Research on Mixed Frequency Asset Pricing Based on Generative Adversarial Network [J]. Chinese Journal of Management Science, 2024, 32(11): 53-64. |
[4] | Yuting Yan,Wenjie Bi. A Data-driven Single-Period Newsvendor Problem Based on XGBoost Algorithm [J]. Chinese Journal of Management Science, 2024, 32(1): 260-267. |
[5] | CHEN Miao-xin, HUANG Zhen-wei. Long Memory Volatility and Cross-section Stock Returns: Empirical Research in Chinese Stock Market [J]. Chinese Journal of Management Science, 2023, 31(4): 1-10. |
[6] | LIANG Mo, LI Hong-xiang, ZHANG Shun-ming. A Measure for Financial Distress based on ST Predictive Model and the Cross-section of Stock Returns [J]. Chinese Journal of Management Science, 2023, 31(2): 138-149. |
[7] | Peng ZHANG,Shi-li DANG,Mei-yu HUANG,Jing-xin LI. Two-stage Mean Semi-variance Portfolio Optimization with Stock Return Prediction Using Machine Learning [J]. Chinese Journal of Management Science, 2023, 31(12): 96-106. |
[8] | Jian ZHANG,Ting-yu XIE,Peng PENG,Hong-wei WANG. Research on the Correlation between Product Knowledge Attributes and Sales Forecast in Multi-Value Chain Collaborative Data Space of Manufacturing Industry [J]. Chinese Journal of Management Science, 2023, 31(11): 341-348. |
[9] | LU Jing, ZHANG Yin-ying. Idiosyncratic Volatility Puzzle and Its Estimation Model [J]. Chinese Journal of Management Science, 2022, 30(9): 36-48. |
[10] | LIU De-wen, GAO Wei-he, MIN Liang-yu. The Impact of Readability and Attractiveness on Product Sales——Text Analysis Based on Movie Introduction [J]. Chinese Journal of Management Science, 2022, 30(6): 167-177. |
[11] | LIANG Chao, WEI Yu, MA Feng, LI Xia-fei. Forecasting Volatility of China Gold Futures Price: New Evidence from Model Shrinkage Methods [J]. Chinese Journal of Management Science, 2022, 30(4): 30-41. |
[12] | CHEN Kai-jie, TANG Zhen-peng, WU Jun-chuang, ZHANG Ting-ting, DU Xiao-xu. Prediction Method and Empirical Study of Precious Metal Futures Price [J]. Chinese Journal of Management Science, 2022, 30(12): 245-253. |
[13] | YUAN George Xianzhi, , , , , , ZHAO Min, LIU Hai-yang, ZHOU Yun-peng, YAN Cheng-xing, SHI Bao-feng, CHAI Na-na, LIN Jian-wu, HE Cheng-ying, MA Sheng, ZHANG Qian-you, DING Xiao-wei. The Framework for Characteristic Factors of Poverty Statusby Using AI Algorithms:Related to the Path Choice of Rural Revitalization in China [J]. Chinese Journal of Management Science, 2022, 30(12): 234-244. |
[14] | LI Jian-bin, LEI Ming-hao, DAI Bin, CAI Xue-yuan. Epharmacy Demand Forecasting in the Presence of Promotional Activities [J]. Chinese Journal of Management Science, 2022, 30(12): 120-130. |
[15] | DONG Lu-an, YE Xin. Interpretable Credit Risk Assessment Modeling Based on Improved Pedagogical Method [J]. Chinese Journal of Management Science, 2020, 28(9): 45-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|