Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (1): 323-334.doi: 10.16381/j.cnki.issn1003-207x.2024.1708
Previous Articles Next Articles
Jie Song1, Jingsi Huang1(), Guannan He1, Jianxiao Wang2
Received:
2024-09-25
Revised:
2024-10-21
Online:
2025-01-25
Published:
2025-02-14
Contact:
Jingsi Huang
E-mail:jingsi.huang@pku.edu.cn
CLC Number:
Jie Song, Jingsi Huang, Guannan He, Jianxiao Wang. Risk Measurement and Resilience Improvement of Water-Energy-Food Coupling Systems[J]. Chinese Journal of Management Science, 2025, 33(1): 323-334.
"
问题尺度 | 代表性建模方法 | 方法优势 | 方法劣势 |
---|---|---|---|
宏观尺度 (全球和国家) | 可计算一般均衡模型[ 经济计量分析[ 生态网络分析[ | 能够全面刻画和定量分析宏观和微观系统的关联与传导关系 | 难以处理跨尺度问题、强烈依赖理论假设,与多变的环境互动困难 |
中观尺度 (流域和城市) | 多智能体建模[ 多要素决策与集成建模[ 系统动力学[ 生命周期分析[ | 能够对各系统内部和系统链接节点较精细建模,实现复杂系统整体和子系统局部的演化过程分析和全生命周期评估 | 难以支撑精细化决策和协同优化运营管理 |
微观尺度 (社区) | 随机优化[ 鲁棒优化[ 多智能体仿真和离散事件仿真[ | 能够对物质流的转换物理过程精细化建模,支撑与环境频繁交互下的优化决策与应急管理 | 对设备、系统参数的要求较高,泛化性相对较低 |
1 | Davis N .Global risks 2011 report (6th edition)[R].Discussion Paper, World Economic Forum, 2011. |
2 | 李桂君, 李玉龙, 贾晓菁, 等. 北京市水-能源-粮食可持续发展系统动力学模型构建与仿真[J]. 管理评论, 2016, 28(10): 11-26. |
Li G J, Li Y L Jia X J, et al. Establishment and simulation study of system dynamic model on sustainable development of water-energy-food nexus in Beijing[J]. Management Review, 2016, 28(10): 11-26. | |
3 | 林志慧, 刘宪锋, 陈瑛, 等. 水-粮食-能源纽带关系研究进展与展望[J]. 地理学报, 2021, 76(7): 1591-1604. |
Lin Z H, Liu X F, Chen Y, et al. Water-food-energy nexus: Progress, challenges and prospect[J]. Acta Geographica Sinica, 2021, 76(7): 1591-1604. | |
4 | 王慧敏, 洪俊, 刘钢. “水-能源-粮食”纽带关系下区域绿色发展政策仿真研究[J]. 中国人口·资源与环境, 2019, 29(6): 74-84. |
Wang H M, Hong J, Liu G. Simulation research on different policies of regional green development under the nexus of water-energy-food[J]. China Population, Resources and Environment, 2019, 29(6): 74-84. | |
5 | Zhang Q, Xu C. Y, Tao H,et al. Climate changes and their impacts on water resources in the arid regions: A case study of the tarim river basin,China[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(3): 349-358. |
6 | Zhang C, Chen X, Li Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639. |
7 | Zhang W, Zhou T, Wu P. Anthropogenic amplification of precipitation variability over the past century[J]. Science, 2024, 385(6707): 427-432. |
8 | Park J, Seager T P, Rao P S C, et al. Integrating risk and resilience approaches to catastrophe management in engineering systems[J]. Risk Analysis, 2013, 33(3): 356-367. |
9 | Holling C S. Resilience and stability of ecosystems[J]. Annual Review of Ecology & Systematics, 1973, 4(1):1-24. |
10 | 洪流, 赵晓波, 汪寿阳, 等. 供应链韧性与安全中的关键科学问题[J]. 中国科学基金, 2023, 37(3): 418-428. |
Hong L, Zhao X B, Wang S Y, et al. Key scientific issues on supply chain resilience and securit[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(3): 418-428. | |
11 | Hosseini S, Barker K, Ramirez-Marquez J E. A review of definitions and measures of system resilience[J]. Reliability Engineering & System Safe, 2016, 145: 47-61. |
12 | 王浩, 姜珊, 朱永楠, 等. 中国水-能-粮耦合系统协同安全发展战略研究[J]. 中国水利, 2024, 17, 5-12. |
Wang H, Jiang S, Zhu Y N, et al. Research on the collaborative safety development strategy of water-energy-food nexus in China[J]. China Water Resources, 2024, 17, 5-12. | |
13 | Xu Z, Chen X, Liu J, et al. Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems[J]. Nature Communications, 2020, 11: 5837. |
14 | 王煜, 彭少明, 郑小康, 等. 水网布局下黄河流域应对极端枯水的关键科学问题[J]. 水科学进展, 2024, 35(1): 11-23. |
Wang Yu, Peng S M, Zheng X K, et al. Key scientific issues of dealing with extreme dry events in the yellow river basinunder the layout of water netowrk[J]. Advances in Water Science, 2024, 35(1): 11-23. | |
15 | Huang J, Wu X, Zheng Z, et al. Multi-objective optimal operation of combined cascade reservoir and hydrogen system[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2836-2847. |
16 | Huang J, Li W, Wu X, et al. A bi-level capacity planning approach of combined hydropower-hydrogen system[J]. Journal of Cleaner Production, 2021, 327(6054): 129414. |
17 | 王红瑞,赵伟静,邓彩云,等.水-能源-粮食纽带关系若干问题解析[J].自然资源学报, 2022, 37(2): 307-319. |
Wang H R, Zhao W J, Deng C Y, et al. Analysis on issues of water-energy-food nexus[J]. Journal of Natural Resources, 2022, 37(2): 307-319. | |
18 | Walsh M, Van Doren L, Shete N, et al. Financial trade offs of energy and food uses of algal biomass under stochastic conditions[J]. Applied Energy, 2018, 210: 591-603. |
19 | Naidoo D, Nhamo L, Mpandeli S, et al. Operationalising the water-energy-food nexus through the theory of change[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111416. |
20 | Huntington H P, Schmidt J, Loring P A, et al. Applying the food-energy-water nexus concept at the local scale[J].Nature Sustainability, 2021, 4: 672-679. |
21 | Zhang W, Valencia A, Gu L, et al. Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement[J]. Applied Energy, 2020, 279: 115716. |
22 | Wu Y, Yu G, Shao Q. Resilience benefit assessment for multi-scale urban flood control programs[J]. Journal of Hydrology, 2022, 613: 128349. |
23 | Sweetapple C, Fu G, Farmani R, et al. Exploring wastewater system performance under future threats: Does enhancing resilience increase sustainability?[J]. Water Research, 2019, 149: 448-459. |
24 | Schmidt J J, Matthews N. From state to system: Financialization and the water-energy-food-climate nexus[J]. Geoforum, 2018, 91: 151-159. |
25 | Rai P K. Role of water-energy-food nexus in environmental management and climate action[J]. Energy Nexus, 2023, 11: 100230. |
26 | Zhu Y, Zhang C, Fang J, et al. Paths and strategies for a resilient megacity based on the water-energy-food nexus[J]. Sustainable Cities and Society, 2022, 82: 103892. |
27 | Zhao Y, Zhang X, Xu J, et al. Water-energy-environment nexus under different urbanization patterns: A sensitivity-based framework for identifying key feedbacks[J]. Journal of Cleaner Production, 2023, 408: 137243. |
28 | Mun K G, Zhao Y, Rafique R A. Designing hydro supply chains for energy, food, and flood[J]. Manufacturing & Service Operations Management, 2020, DOI: 10.1287/msom.2019.0842 . |
29 | 高静, 王小琳, 孙旭光, 等. 基于ISM-AHP方法的新疆能源-粮食-水耦合系统协调发展研究[J]. 系统科学与数学, 2022, 42(12): 3288-3305. |
Gao J, Wang X L, Sun X G, et al. Research on coordinated development of xinjiang energy-food-water nexus based on ISM-AHP method[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(12): 3288-3305. | |
30 | 鄂维南. AI助力打造科学研究新范式[J]. 中国科学院院刊, 2024, 39(1): 10-16. |
Weinan E. AI helps to establish a new paradigm for scientific research[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 10-16. | |
31 | Ge J, Lei Y, Tokunaga S. Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China[J]. Energy, 2014, 65: 346-356. |
32 | Allard A, Takman J, Uddin G S, et al. The N-shaped environmental kuznets curve: An empirical evaluation using a panel quintile regression approach[J]. Environmental Science and Pollution Research, 2018, 25: 5848-5861. |
33 | Conway D, Van garderen E, Deryng D, et al. Climate and southern Africa’s water-energy-food nexus[J]. Nature Climate Change, 2015, 5: 837-846. |
34 | Ren H, Liu B, Zhang Z, et al. A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty[J]. Applied Energy, 2022, 326: 120008. |
35 | Mortada S, Najm M A, Yassine A, et al. Towards sustainable water-food nexus: An optimization approach[J]. Journal of Cleaner Production, 2018, 178: 408-418. |
36 | Bois A S, Boix M, Montastruc L. Multi-actor integrated modeling approaches in the context of water-energy-food nexus systems: Review[J]. Computers and Chemical Engineering, 2024, 182: 108559. |
37 | Du E, Cai X, Brozovic N, et al. Evaluating the impacts of farmers’behaviors on a hypothetical agricultural water market based on double auction[J]. Water Resource Research, 2017, 53: 4053-4072. |
38 | Chang Y, Huang R, Ries R J, et al. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China[J]. Energy, 2015, 86: 335-343. |
39 | Govindan R, Al-Ansari T. Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 653-668. |
40 | 鞠平, 王冲, 辛焕海,等. 电力系统的柔性、弹性与韧性研究[J]. 电力自动化设备, 2019, 39(11): 1-7. |
Ju P, Wang C, Xin H H, et al. Flexibility, resilience and toughness of power system[J]. Electric Power Automation Equipment, 2019, 39(11): 1-7. | |
41 | 刘畅, 黄杨, 杨昕然, 等. 计及储能及负荷转供协同调度的城市电网弹性运行策略[J]. 电力系统保护与控制, 2021, 49(6): 56-66. |
Liu C, Huang Y, Yang X R, et al. Flexible operation strategy of an urban transmission network considering energy storage systems and load transfer characteristics[J]. Power System Protection and Control, 2021, 49(6): 56-66. | |
42 | Lei S, Pozo D, Wang M, et al. Power economic dispatch against extreme weather conditions: The price of resilience[J]. Renewable and Sustainable Energy Reviews, 2022, 157:111994. |
43 | 汪寿阳, 胡毅, 熊熊, 等. 复杂系统管理理论与方法研究[J]. 管理科学学报, 2021, 24(8): 1-9. |
Wang S Y, Hu Y, Xiong X, et al. Complex systems management: Theory and methods[J]. Journal of Management Sciences in China, 2021, 24(8): 1-9. | |
44 | 盛昭瀚, 于景元. 复杂系统管理:一个具有中国特色的管理学新领域[J]. 管理世界, 2021, 37(6): 36-50. |
Sheng Z H, Yu J Y. Complex systems management: An emerging management science with Chinese characteristics[J]. Journal of Management World, 2021, 37(6): 36-50. | |
45 | 狄增如, 陈晓松. 复杂系统科学研究进展[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 371-381. |
Di Z R, Chen X S. Complex systems science: Recent advances[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(3): 371-381. | |
46 | 吴建军, 高自友. 重大突发事件下区域综合交通系统应急保障和管理[J]. 管理科学, 2021, 34(6): 67-70. |
Wu J J, Gao Z Y. Emergency support and management of regional integrated traffic system under significant events[J]. Journal of Management Science, 2021, 34(6): 67-70. | |
47 | 吴建军, 吕莹. 全球变局下的管理科学与工程研究[J]. 中国管理科学, 2022, 30(5): 21-26. |
Wu J j, Lv Y. Research on management science and engineering under global change[J]. Chinese Journal of Management Science, 2022, 30(5): 21-26. | |
48 | Klibi W, Martel A. Scenario-based supply chain network risk modeling[J]. European Journal of Operational Research, 2012, 223(3): 644-658. |
49 | Macdonald J R, Zobel C W, Melnyk S A, et al. Supply chain risk and resilience: Theory building through structured experiments and simulation[J]. International Journal of Production Research, 2018, 56(12): 4337-4355. |
50 | 陈剑, 刘运辉. 数智化使能运营管理变革:从供应链到供应链生态系统[J].管理世界, 2021, 37(11): 227-240+14. |
Chen J, Liu Y H. Operations management innovation enabled by digitalization and intellectualization:From supply chain to supply chain ecosystem[J]. Journal of Management World, 2021, 37(11): 227-240+14. | |
51 | Kim Y, Chen Y S, Linderman K. Supply network disruption and resilience: A network structural perspective[J]. Journal of Operations Management, 2015, 33: 43-59. |
52 | Govindan K, Fattahi M, Keyvanshokooh E. Supply chain network design under uncertainty: A comprehensive review and future research directions[J]. European Journal of Operational Research, 2017, 263(1): 108-141. |
53 | 李广, 赵道致. 供应链网络的无标度特性研究[J]. 工业工程, 2012, 15(1): 28-32. |
Li G, Zhao D Z. A study on the scale-free characteristics of supply chain network[J]. Industrial Engineering Journal, 2012, 15(1): 28-32. | |
54 | Núñez-López J M, Cansino-Loeza B, Sánchez-Zarco X, et al. Involving resilience in assessment of the water-energy-food nexus for arid and semiarid regions[J]. Clean Technologies and Environmental Policy, 2022, 24: 1681-1693. |
55 | Li W, Jiang S, Zhao Y, et al. A copula-based security risk evaluation and probability calculation for water-energy-food nexus[J]. Science of the Total Environment, 2023, 856: 159236. |
56 | Cai Y, Cai J, Chen D, et al. Development of an integrated prediction-optimization modeling approach for coupled risk management of water and energy nexus systems[J]. Science of the Total Environment, 2021, 781: 146744. |
57 | Dargin J, Berk A, Mostafavi A. Assessment of household-level food-energy-water nexus vulnerability during disasters[J]. Sustainable Cities and Society, 2020, 62: 102366. |
58 | Powell J, Mustafee N, Chen A S, et al. System-focused risk identification and assessment for disaster preparedness: Dynamic threat analysis[J]. European Journal of Operational Research, 2016, 254: 550-564. |
59 | Schmitt A J, Singh M. A quantitative analysis of disruption risk in a multi-echelon supply chain[J]. International Journal of Production Economics, 2012, 139(1): 22-32. |
60 | Mizgier K J, Wagner S M, Jüttner M P. Disentangling diversification in supply chain networks[J]. International Journal of Production Economics, 2015, 162: 115-124. |
61 | Tim J, Joshua C, Dirk P. Fitting mixture importance sampling distributions via improved cross-entropy[C]// Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, DSA,December 11-14,IEEE 2012, 2(4): 422-428. |
62 | Zdravko I, Dirk P. An efficient algorithm for rare-event probability estimation, combinatorial optimization, and counting[J]. Methodology & Computing in Applied Probability, 2008, 10(4): 471-505. |
63 | 王丽萍, 范文慧. 稀有事件仿真算法综述[J]. 系统仿真学报, 2018, 30(9): 3249-3254+63. |
Wang L P, Fan W H. A review of rare event simulation[J]. Journal of System Simulation, 2018, 30(9): 3249-3254+63. | |
64 | 徐晓云, 李大庆, 江逸楠, 等. 网络故障传播研究进展综述[J]. 电子科学技术, 2015, 2(6): 697-701. |
Xu X Y, Li D Q, Jiang Y N, et al. Review of recent progress on propagation of cascading failures in complex networks[J]. Electronic Science & Technology, 2015, 2(6): 697-701. | |
65 | 杨乃定, 王京北, 张延禄, 等. 考虑自适应行为的研发网络风险传播模型构建及仿真[J]. 中国管理科学, 2020, 28(3): 182-190. |
Yang N D, Wang J B, Zhang Y L, et al. Risk propagation modeling and simulation in R & D network when considering the adaptive behaviors[J]. Chinese Journal of Management Science, 2020, 28(3): 182-190. | |
66 | Bie Z, Lin Y, Li G, et al. Battling the extreme: A study on the power system resilience[J]. Proceedings of the IEEE, 2017, 105(7): 1253-1266. |
67 | Tran T H, Dobrovnik M, Kummer S. Supply chain risk assessment: A content analysis-based literature review[J]. International Journal of Logistics Systems and Management, 2018, 31(4): 562-591. |
68 | Yang C, Tian K, Gao X. Supply chain resilience: Measure, risk assessment and strategies[J]. Fundamental Research, 2024, DOI:10.1016/j.fmre.2023.03.011 . |
69 | Ghadge A, Dani S, Chester M, et al. A systems approach for modelling supply chain risks[J]. Supply Chain Management: an International Journal, 2013, 18(5): 523-538. |
70 | Aqlan F, Lam S S. A fuzzy-based integrated framework for supply chain risk assessment[J]. International Journal of Production Economics, 2015, 161: 54-63. |
71 | Aldrighetti R, Battini D, Ivanov D, et al. Costs of resilience and disruptions in supply chain network design models: A review and future research directions[J]. International Journal of Production Economics, 2021, 235: 108103. |
72 | Simchi-Levi D, Schmidt W, Wei Y, et al. Identifying risks and mitigating disruptions in the automotive supply chain[J]. Interfaces, 2015, 45(5): 375-390. |
73 | Pereira M M, Frazzon E M. A data-driven approach to adaptive synchronization of demand and supply in omni-channel retail supply chains[J]. International Journal of Information Management, 2021, 57: 102165. |
74 | Liu Y, Chen B. Water-energy scarcity nexus risk in the national trade system based on multi regional input-output and network environmental analyses[J]. Applied Energy, 2020, 268: 114974. |
75 | Liu Y, Chen B, Chen G, et al. Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use[J]. Science of the Total Environment, 2020, 736: 139582. |
76 | Schlör H, Venghaus S. Measuring resilience in the food-energy-water nexus based on ethical values and trade relations[J]. Applied Energy, 2022, 323: 119447. |
77 | 陈磊, 邓欣怡, 陈红坤, 等. 电力系统韧性评估与提升研究综述[J]. 电力系统保护与控制, 2022, 50(13): 11-22. |
Chen L, Deng X Y, Chen H K, et al. Review of the assessment and improvement of power system resilience[J]. Power System Protection and Control, 2022, 50(13): 11-22. | |
78 | Chowdhury M, Quaddus M. Supply chain resilience: Conceptualization and scale development using dynamic capability theory[J]. International Journal of Production Economics, 2017, 188: 185-204. |
79 | Zouari D, Ruel S, Viale L. Does digitalising the supply chain contribute to its resilience?[J]. International Journal of Physical Distribution & Logistics Management, 2020, 51(2): 149-180. |
80 | Hohenstein N O, Feisel E, Hartmann E, et al. Research on the phenomenon of supply chain resilience: A systematic review and paths for further investigation[J]. International Journal of Physical Distribution & Logistics Management, 2015, 45(1): 90-117. |
81 | Behzadi G, O’Sullivan M J, Olsen T L. On metrics for supply chain resilience[J]. European Journal of Operational Research, 2020, 287(1): 145-158. |
82 | Hosseini S, Barker K, Ramirez-Marquez J. A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2016, 145: 47-61. |
83 | Han Y, Chong W K, Li D. A systematic literature review of the capabilities and performance metrics of supply chain resilience[J]. International Journal of Production Research, 2020, 58(15): 4541-4566. |
84 | López-Flores F J, Sánchez-Zarco X G, Rubio-Castro E, et al. A machine learning approach for optimizing the water-energy-food-ecosystem nexus: A resilience perspective for sustainability[J]. Environment, Development and Sustainability, 2023, DOI:10.1007/s10668-023-04257-y . |
85 | Najafi J, Peiravi A, Anvari-Moghaddam A, et al. An efficient interactive framework for improving resilience of power-water distribution systems with multiple privately-owned microgrids[J]. Electrical Power and Energy Systems, 2020, 116: 105550. |
86 | Najafi J, Peiravi A, Guerrero J M. Power distribution system improvement planning under hurricanes based on a new resilience index[J]. Sustainable Cities and Society, 2018, 39: 592-604. |
87 | 徐博, 张弛, 蒋云钟, 等. 供水系统可靠性-回弹性-脆弱性与多元要素的响应关系研究[J]. 水利学报, 2020, 51(12): 1502-1513. |
Xu B, Zhang C, Jiang Y Z, et al. Reliability-resilience-vulnerability of water supply system and its response relationship to multiple factors[J]. Shuili Xuebao, 2020, 51(12): 1502-1513. | |
88 | Liu D, Li M, Ji Y, et al. Spatial-temporal characteristics analysis of water resource system resilience in irrigation areas based on a support vector machine model optimized by the modified gray wolf algorithm[J]. Journal of Hydrology, 2021, 597: 125758. |
89 | Ding W, Wei G, Zhou H. Improving ffood resilience through optimal reservoir operation[J]. Journal of Hydrology, 2023, 620: 129494. |
90 | Pagano A, Giordano R, Portoghese I. A pipe ranking method for water distribution network resilience assessment based on graph-theory metrics aggregated through bayesian belief networks[J]. Water Resources Management, 2022, 36: 5091-5106. |
91 | Salman A M, Li Y, Stewart M G. Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes[J]. Reliability Engineering and System Safety, 2015, 144: 319-333. |
92 | Emenike S N, Falcone G. A review on energy supply chain resilience through optimization[J]. Reliability Engineering and System Safety, 2020, 134: 110088. |
93 | 薛禹胜, 谢东亮, 薛峰, 等. 支持信息-物理-社会系统研究的跨领域交互仿真平台[J]. 电力系统自动化, 2022, 46(10): 138-148. |
Xue Y S, Xie D L, Xue F, et al. A cross-field interactive simulation platform for wupporting research on cyber-physical-social systems[J]. Automation of Electric Power Systems, 2022, 46(10): 138-148. | |
94 | 王晓辉. 互联网生态下舆情对粮食安全的影响[J]. 粮油食品科技, 2023, 31(4): 28-35. |
Wang X H. The impact of public opinion on food security under the internet ecology[J]. Science and Technology of Cereals,Oils and Foods, 2023, 31(4): 28-35. | |
95 | Wang Y, Chen C F, Kong P Y, et al. A cyber-physical-social perspective on future smart distribution systems[J]. Proceedings of the IEEE, 2023, 111(7): 694-724. |
[1] | WANG Zong-run, CHEN Xi. Psychological Factors, Transaction Environment Change and Risk Measurement of Structured Products: A Review of Research [J]. Chinese Journal of Management Science, 2020, 28(8): 15-29. |
[2] | CUI Yu-quan, LIU Bing-jie, LIU Cong, QU Jing-jing. Optimization Model Analysis of New Order Agricultural Cooperation Model [J]. Chinese Journal of Management Science, 2020, 28(12): 140-150. |
[3] | FENG Ling, WEN Lu, XIAO Yang. Repricing the Default Risk of Financial Institutions Based on the Expectation of an Implicit Government Guarantee Withdrawal [J]. Chinese Journal of Management Science, 2020, 28(11): 43-50. |
[4] | CHEN Rong-da, ZHOU Han-xian, Yu Le-an, Jin Cheng-lu. Risk Measurement on Structured Financial Products and Its Application Based on Internet Financial Model [J]. Chinese Journal of Management Science, 2020, 28(11): 23-34. |
[5] | LIU Chao, LI Yuan-rui, JIANG Chao, MA Yu-jie, LIU Chen-qi, XIE Qi-wei. Research on Systematic Risk Measurement and Evolution Characteristics of China's Securities Companies——Empirical Data from 20 Listed Securities Companies [J]. Chinese Journal of Management Science, 2019, 27(5): 11-22. |
[6] | ZHU Xiao-qian, LI Jing-yu, LI Jian-ping, CHEN Yi-bin, WEI Lu. An Indicator of Conditional Probability of Crisis for Systemic Risk Measurement [J]. Chinese Journal of Management Science, 2018, 26(6): 1-7. |
[7] | LIU Xiang-dong, FAN Bin, Yang Yi-ming, LIU Cheng. High-dimensional Portfolio Risk Measurement Based on M-Copula-SV-t Model [J]. Chinese Journal of Management Science, 2017, 25(2): 1-9. |
[8] | WU Jian-hua, WANG Xin-jun, ZHANG Ying. Endogenous Recovery Rate and Credit Risk Measurement [J]. Chinese Journal of Management Science, 2016, 24(1): 1-10. |
[9] | JI Xin-long, ZHOU Xiao-hua. Risk Measurement Based on Markov Stochastic Volatility and EVT [J]. Chinese Journal of Management Science, 2014, 22(10): 44-51. |
[10] | XIAO Yuan, HU Xiao-ping, DANG Feng-shun. Research on the Model of Risk Measurement in China’s Open-end Fund Market [J]. Chinese Journal of Management Science, 2009, 17(6): 25-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|