主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Study on Credit Risk Assessment Model Based on Automatic Clustering Using an Differential Evolution Algorithm

Expand
  • 1. School of Information Management, Central China Normal University, Wuhan 430079, China;
    2. College of Mathematics and Information, South China Agricultural University, Guangzhou 510642, China

Received date: 2013-11-15

  Revised date: 2014-02-02

  Online published: 2015-04-24

Abstract

With the increasing complexity of risk assessment, multi-dimensional, multi-timing and other irregular sample data increases the difficulty of the assessment. In this paper, the establishment of credit risk evaluation of differential evolution automatic clustering model is applyed to our assessment of the credit risk of listed companies. The prior knowledge of classified data is not required in this model, on the contrary, swarm intelligence is used to find the optimal partition. By data simulation and empirical comparative study of credit risk assessment and genetic algorithms, decision tree, BP neural network model, the results show that the model can be very accurately to find the corresponding data partition, which greatly improving the accuracy of the credit assessment, reducing the cost of risk, making a high value of credit risk management and control.

Cite this article

ZHANG Da-bin, ZHOU Zhi-gang, XU Zhi, LI Yan-hui . Study on Credit Risk Assessment Model Based on Automatic Clustering Using an Differential Evolution Algorithm[J]. Chinese Journal of Management Science, 2015 , 23(4) : 39 -45 . DOI: 10.16381/j.cnki.issn1003-207x.2015.04.005

References

[1] Thomas L C, Edelman D B, Crook J N. Credit scoring and its applications [M].Philadelphia, PA:SIAM, 2002.

[2] Hand D J, Henley W E. Statistical classification methods in consumer credit scoring:A review[J]. Journal of the Royal Statistical Society:Series A, 1997, 160(3):523-541.

[3] Martin D.Early warning of bank failure:A logit regression approach[J]. Journal of Banking and Finace, 1977, 1(3):249-276.

[4] 陈静.上市公司财务恶化预测的实证分析[J]. 会计研究, 1999, (4):31-38.

[5] 唐晓岸, 孟庆福.上市公司信用评价模型[J]. 预测, 2002, 21(2):39-43.

[6] West D.Neural network credit scoring models[J]. Computer& Operations Research, 2000, 27(11):1131-1152.

[7] 杨雨, 史秀红.个人信用风险计量:双边抗体人工免疫概率模型[J]. 系统工程理论与实 践, 2009, 29(12):88-93.

[8] 姚奕, 叶中行.基于支持向量机的银行客户信用评估系统研究[J]. 系统仿真学报, 2004, 16(4):783-786.

[9] Huang C L, Chen Muchen, Wang C J. Credit scoring with data mining approach based on support vector machines[J]. Expert Systems and Applications, 2007, 33(4):847-856.

[10] 张大斌, 王婧, 刘桂琴, 等. 模糊自适应遗传算法[J]. 计算机工程与设计, 2008, 29(18):4783-4788.

[11] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[M]. Berkeley:ICSI, 1995.

[12] Storn R, Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359.

[13] Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A:Systems and Humans, 2008, 38(1):218-236.

[14] 潘章明. 一种改进的差分进化自动聚类算法[J]. 计算机仿真, 2010, 27(11):69-72.

[15] Bandyopadhyay S, Maulik U. Genetic clustering for automatic evolution of clusters and application to image classification[J]. Pattern Recognit, 2002, 35(6):1197-1208.

[16] Omran M, Salman A, Engelbrecht A. Dynamic clustering using particle swarm optimization with application in unsupervised image clas sification[J]. Pattern Analysis and Applications, 2006, 8(4):332-344.

[17] Blake C, Keough E, Merz C J. UCI repository of machine learning database[DB/OL]. 1998. http://www.ics.uci.edu/mlearn/MLrepository.html.

[18] Pal S K, Majumder D D. Fuzzy sets and decision making ap-proaches in vowel and speaker recognition[J]. IEEE Trans.Syst, Man, Cybern., 1977, 7(8):625-629.

[19] 张洪祥, 毛志忠. 基于多维时间序列的灰色模糊信用评价研究[J]. 管理科学学报, 2011, 14(1):28-37.

[20] 陈元燮. 建立信用评级指标体系的几个理论问题[J]. 财经问题研究, 2000, (8):3-8.

[21] 郭军华, 李帮义. 基于FC和VPRS的信用风险评价研究[J]. 预测, 2009, 28(5):32-37.

[22] Fisher R A. The use of multiple measurements in taxonomic problems[J].Annals of Eugenics, 1936, (7):179-188.
Outlines

/