主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Managing Disruption Risk with Inventory Pooling Policy

Expand
  • 1. School of Management, University of Science and Technology of China, Hefei 230026, China;
    2. School of Business, Nantong University, Nantong 226019, China;
    3. School of Business Administration, Jiangsu University, Zhenjiang 212013, China

Received date: 2013-03-06

  Revised date: 2014-03-12

  Online published: 2015-05-20

Abstract

Consider a two-retailer inventory system, a Non-cooperative game model is established to describe inventory pooling policy under disruption risk. It is proved that there exists a unique Nash equilibrium solution to the model. Model analyses show that lateral transshipments always possibly improve retailer's optimal expected profits under demand disruptions. Moreover, comparative static results reflect transshipment price and transshipment cost are two important parameters for optimal order volumes and optimal expected profits. At last, a heuristic algorithm is designed to solving the model's Nash equilibrium.

Cite this article

CHEN Jing-xian, MENG Qing-feng . Managing Disruption Risk with Inventory Pooling Policy[J]. Chinese Journal of Management Science, 2015 , 23(5) : 65 -72 . DOI: 10.16381/j.cnki.issn1003-207x.2015.05.009

References

[1] Gross D. Centralized inventory control in multilocation supply systems[M]//Scarf H E, Gilford D M, Shelly M W. Multistage Inventory Models and Techniques. Stanford C A: Stanford University Press, 1963.

[2] Kranenburg A A. Spare parts inventory control under system availability constraints[D]. Eindhoven: Technische Universiteit Eindhoven, 2006.

[3] 陈敬贤, 王国华, 梁樑. 供应链系统中零售商横向转载的随机规划模型及算法[J]. 系统工程理论与实践, 2012, 32(4): 738-745.

[4] Rudi N, Kapur S, Pyke D F. A two-location inventory model with transshipment and local decision making[J]. Management Science, 2001, 47(12): 1668-1680.

[5] Dong Lingxiu, Rudi N. Who benefits from transshipment? Exogenous vs. Endogenous wholesale price[J]. Management Science, 2004, 50(5): 645-657.

[6] Hu Xinxin, Duenyas I, Kapuscinski R. Existence of coordinating transshipment prices in a two-location inventory model[J]. Management Science, 2007, 53(8): 1289-1302.

[7] Hu Xinxin, Duenyas I, Kapuscinski R. Optimal joint inventory and transshipment control under uncertain capacity[J]. Operations Research, 2008, 56(4): 881-897.

[8] Hanny E, Tzur M, Levran A. The transshipment fund mechanism: Coordinating the decentralized multilocation transshipment problem[J]. Naval Research Logistics, 2010, 57(4): 342-353.

[9] Anupindi R, Bassok Y, Zemel E.A general framework for the study of decentralized distribution systems[J]. Manufacturing & Service Operations Management, 2001, 3(4): 349-368.

[10] Huang Xiao, Sovsic G. Transshipment of inventories: Dual allocation vs. transshipment prices[J]. Manufacturing\& Service Operation Management, 2010, 12(2): 299-318.

[11] Huang Xiao, Sovsic G. Repeated newsvendor game with transshipments under dual allocations[J]. European Journal of Operational Research, 2010, 204(2): 274-284.

[12] Hezarkhani B, Kubiak W. A coordinating contract for transshipment in a two-company supply chain[J]. European Journal of Operational Research, 2010, 207(1): 232-237.

[13] Zhao Xuan, Atkins D. Transshipment between competing retailers[J]. IIE Transactions, 2009, 41(8): 665-676.

[14] 陈敬贤, 李国昊, 施国洪. 含有顾客退货的零售商转载博弈[J]. 计算机集成制造系统, 2012, 18(10): 2303-2311.

[15] Lee H L. A multi-echelon inventory model for repairable items with emergency lateral transshipments[J]. Management Science, 1987, 33(10): 1302-1316.

[16] 钱宇, 陈剑. 供应链中考虑下游转运的订货和定价决策研究[J]. 中国管理科学, 2008, 16(1): 53-59.

[17] Lariviere M A, Porteus E L. Selling to the newsvendor: An analysis of price——only contracts[J]. Manufacturing & Service Operations Management, 2001, 3(4): 293-305.
Outlines

/