The current network planning technique is mainly concern with single-layer network, which lacks the efficiency in guiding the production of large-scale manufacturing project. The production process of large-scale project whose activities are tens of thousands is complex, which brings extremely difficulty in describing the corresponding network. However, according to the hierarchical network technology, a complex network can be divided into several simple sub-networks, which means a large type of network can be transformed to a single-layer network, and single-layer network technology can be used to analyze the complex network. In this paper, based on the process of building a large type of network, the issue that how to simplify the network of large-scale project is studied in this paper, several single-layer networks is divided, and the calculation of the float in hierarchical network is carried out. Finally, correctness and feasibility of the conclusion are illuminated through example analysis.
LI Xing-mei, ZHANG Qian, WEI Han-jing, QI Jian-xun
. The Analysis of Float Calculation in the Hierarchical Network[J]. Chinese Journal of Management Science, 2015
, 23(6)
: 147
-152
.
DOI: 10.16381/j.cnki.issn1003-207x.201.06.019
[1] 苏志雄, 乞建勋, 阚芝南. 求解CPM网络计划的最大网络时差[J]. 运筹与管理, 2014, 23(1): 33-38.
[2] 胡劲松. 模糊环境下大型工程项目网络计划方法研究[J]. 管理工程学报, 2002, 16(1): 15-17.
[3] 李星梅, 张倩, 乞建勋, 等. 具有时间转换约束项目网络的时差分析[J]. 中国管理科学, 2013, 21(1): 134-141.
[4] 蔡晨, 万伟. 基于PERT/CPM的关键链管理[J]. 中国管理科学, 2003, 11(6): 35-39.
[5] Guerriero F, Talarico L.A solution approach to find the critical path in a time-constrained activity network[J]. Computer & Operations Research, 2010, 37(9): 1557-1569.
[6] Yang H H, Chen Y L. Finding the critical path in an activity network with time-switch constraints[J]. European Journal of Operational Research, 2000, 120(3): 603-613.
[7] 彭武良,王承恩. 关键链项目调度模型及遗传算法求解[J]. 系统工程学报, 2010, 25(1): 123-131.
[8] 李星梅, 张倩, 乞建勋, 等. 对具有时间转换约束网络模型的特性研究[J]. 系统工程学报, 2013, 28(3): 394-402.
[9] 李星梅,张倩,赵新超,等.基于学习效应及时间转换约束双重作用下项目网络模型研究[J].管理工程学报,2015,29(2):63-69.
[10] 贾海红, 苏志雄, 李星梅. 工序机动时间的传递性和稳定性分析[J]. 中国管理科学, 2008, 16(SI): 147-151.
[11] 苏志雄, 李星梅, 乞建勋. 基于CPM原理和Dijkstra算法的SPM网络计划模型及性质[J]. 运筹与管理,2008,17(1):148-153.
[12] Parikh S C, Jewell W S. Decomposition of project networks[J]. Management Science, 1965, 11(3): 444-459.
[13] 李敏芝. 一种处理PERT的计算机方法[J]. 系统工程与电子技术, 1983, (8):60一64.
[14] Muller J H, Spinrad J. Incremental modular decomposition[J]. Journal of the ACM, 1989, 36(1): 1-19.
[15] 李林. 分层网络技术及其应用研究[D]. 长沙: 湖南大学, 2001.
[16] 邹广子. 分层网络计划技术在制造企业项目管理中的应用[D]. 长春: 吉林大学, 2006.
[17] Obreque C, Donoso M, Gutiérrez G, et al. A branch and cut algorithm for the hierarchical network design problem[J]. European Journal of Operational Research, 2010, 200(1): 28-35.
[18] Obreque C, Marianov V, Ríos M. Optimal design of hierarchical networks with free main path extremes[J]. Operations Research Letters, 2008, 36(3): 366-371.
[19] Obreque C, Marianov V. An optimal procedure for solving the hierarchical network design problem[J]. IIE Transactions, 2007, 39(5): 513-524.
[20] Balakrishnan A, Banciu M, Glowacka K, et al. Hierarchical approach for survivable network design[J]. European Journal of Operational Research, 2013, 225(2): 223-235.