主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

The Analysis of Float Calculation in the Hierarchical Network

Expand
  • School of Economics and Management, North China Electric Power University, Beijing 102206, China

Received date: 2013-06-17

  Revised date: 2014-04-10

  Online published: 2015-07-22

Abstract

The current network planning technique is mainly concern with single-layer network, which lacks the efficiency in guiding the production of large-scale manufacturing project. The production process of large-scale project whose activities are tens of thousands is complex, which brings extremely difficulty in describing the corresponding network. However, according to the hierarchical network technology, a complex network can be divided into several simple sub-networks, which means a large type of network can be transformed to a single-layer network, and single-layer network technology can be used to analyze the complex network. In this paper, based on the process of building a large type of network, the issue that how to simplify the network of large-scale project is studied in this paper, several single-layer networks is divided, and the calculation of the float in hierarchical network is carried out. Finally, correctness and feasibility of the conclusion are illuminated through example analysis.

Cite this article

LI Xing-mei, ZHANG Qian, WEI Han-jing, QI Jian-xun . The Analysis of Float Calculation in the Hierarchical Network[J]. Chinese Journal of Management Science, 2015 , 23(6) : 147 -152 . DOI: 10.16381/j.cnki.issn1003-207x.201.06.019

References

[1] 苏志雄, 乞建勋, 阚芝南. 求解CPM网络计划的最大网络时差[J]. 运筹与管理, 2014, 23(1): 33-38.

[2] 胡劲松. 模糊环境下大型工程项目网络计划方法研究[J]. 管理工程学报, 2002, 16(1): 15-17.

[3] 李星梅, 张倩, 乞建勋, 等. 具有时间转换约束项目网络的时差分析[J]. 中国管理科学, 2013, 21(1): 134-141.

[4] 蔡晨, 万伟. 基于PERT/CPM的关键链管理[J]. 中国管理科学, 2003, 11(6): 35-39.

[5] Guerriero F, Talarico L.A solution approach to find the critical path in a time-constrained activity network[J]. Computer & Operations Research, 2010, 37(9): 1557-1569.

[6] Yang H H, Chen Y L. Finding the critical path in an activity network with time-switch constraints[J]. European Journal of Operational Research, 2000, 120(3): 603-613.

[7] 彭武良,王承恩. 关键链项目调度模型及遗传算法求解[J]. 系统工程学报, 2010, 25(1): 123-131.

[8] 李星梅, 张倩, 乞建勋, 等. 对具有时间转换约束网络模型的特性研究[J]. 系统工程学报, 2013, 28(3): 394-402.

[9] 李星梅,张倩,赵新超,等.基于学习效应及时间转换约束双重作用下项目网络模型研究[J].管理工程学报,2015,29(2):63-69.

[10] 贾海红, 苏志雄, 李星梅. 工序机动时间的传递性和稳定性分析[J]. 中国管理科学, 2008, 16(SI): 147-151.

[11] 苏志雄, 李星梅, 乞建勋. 基于CPM原理和Dijkstra算法的SPM网络计划模型及性质[J]. 运筹与管理,2008,17(1):148-153.

[12] Parikh S C, Jewell W S. Decomposition of project networks[J]. Management Science, 1965, 11(3): 444-459.

[13] 李敏芝. 一种处理PERT的计算机方法[J]. 系统工程与电子技术, 1983, (8):60一64.

[14] Muller J H, Spinrad J. Incremental modular decomposition[J]. Journal of the ACM, 1989, 36(1): 1-19.

[15] 李林. 分层网络技术及其应用研究[D]. 长沙: 湖南大学, 2001.

[16] 邹广子. 分层网络计划技术在制造企业项目管理中的应用[D]. 长春: 吉林大学, 2006.

[17] Obreque C, Donoso M, Gutiérrez G, et al. A branch and cut algorithm for the hierarchical network design problem[J]. European Journal of Operational Research, 2010, 200(1): 28-35.

[18] Obreque C, Marianov V, Ríos M. Optimal design of hierarchical networks with free main path extremes[J]. Operations Research Letters, 2008, 36(3): 366-371.

[19] Obreque C, Marianov V. An optimal procedure for solving the hierarchical network design problem[J]. IIE Transactions, 2007, 39(5): 513-524.

[20] Balakrishnan A, Banciu M, Glowacka K, et al. Hierarchical approach for survivable network design[J]. European Journal of Operational Research, 2013, 225(2): 223-235.
Outlines

/