The paper is first to study the identification and estimation of Gaussian affine term structure of interest rate based on Minimum-Chi-Square method. As beginning with the normalized Gaussian model, the identification is from the functional relations of parameters between the structure model and reduced-form model, Minimum-Chi-Square estimation has inherited all the asymptotical properties of MLE in structure model and maintains the reliability of estimator. And then, With the term structure of yields implying in monthly bonds price from 2006 to 2013 in Shanghai Stock Exchange (SSE), Gaussian affine term structure model is empirically applied using the MCS method and the results indicate that the Gaussian affine model gives good fitting of term structure and the merits of the statistical properties of estimators are consistent with structure and reduced-form model.
BAO Jie, GE Jing
. Gaussian Affine Term Structure Model of Interest Rate Based on MCS Approach[J]. Chinese Journal of Management Science, 2015
, 23(7)
: 10
-17
.
DOI: 10.16381/j.cnki.issn1003-207x.2015.07.002
[1] Vasicek O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2):177-188.
[2] Duffie D, Kan Rui. A yield-factor model of interest rates[J]. Mathematical Finance, 1996, 6(4):379-406.
[3] Dai Qiang, Singleton K J. Expectations puzzles, time-varying risk premia and affine models of the term structure[J]. Journal of Financial Economics, 2002, 63(3):415-441.
[4] Duffee G R. Term premia and interest rate forecasts in affine models[J]. Journal of Finance, 2002, 57(1):405-443.
[5] Cochrane J H, Piazzesi M. Decomposing the yield curve.Working Paper,University of Chicago and NBER, 2008.
[6] Christensen J H E, Diebold F X, Rudebusch G D. The affine arbitrage-free class of nelson-siegel term structure models[J]. Journal of Econometrics, 2011, 164(1): 4-20.
[7] Nelson C R, Siegel A F. Parsimonious modeling of yield curves[J]. Journal of Business, 1987,60(4):473-489.
[8] Collin-Dufresne P, Goldstein R S, Jones C S. Identification of maximal affine term structure models[J]. Journal of Finance, 2008, 63(2): 743-795.
[9] At-Sahalia Y, Kimmel R L. Estimating affine multifactor term structure models using closed-form likelihood expansions[J]. Journal of Financial Economics,2010, 98(1):113-144.
[10] Kim D H. Challenges in macro-finance modeling. Working Paper, Federal Reserve Bank of st. Louis,2009.
[11] Ang A., Piazzesi M. A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables[J]. Journal of Monetary Economics, 2003, 50(4): 745-787.
[12] Hamilton J D, Wu J C. Identification and estimation of Gaussian affine term structure models[J]. Journal of Econometrics, 2012, 168(2): 315-331.
[13] Rothenberg T J. Efficient estimation with a priori information[M]. Yale University Press, 1973.
[14] Joslin S, Singleton K J, Zhu Haoxiang. A new perspective on gaussian dynamic term structure models[J]. Review of Financial Studies, 2011, 24(3): 926-970.
[15] Chen R R, Scott L. Maximum likelihood estimation for a multifactor equilibrium model of the term structure of interest rates[J]. The Journal of Fixed Income, 1993, 3(3): 14-31.
[16] Le A, Dai Qiang, Singleton K J. Discrete-time affine Q term structure models with generalized market prices of risk[J]. Review of Financial Studies, 2010, 23(5): 2184-2227.
[17] 吴恒煜,陈鹏,严武,等. 基于Copula的两因子Vasicek利率模型实证研究[J]. 管理学报,2010,7(10): 1529-1534.
[18] 周荣喜,王晓光. 基于多因子仿射利率期限结构模型的国债定价[J]. 中国管理科学,2011,19(4): 26-30.
[19] 文兴易,黎实. 基于局部线性逼近的利率期限结构动态NS模型[J].管理学报,2012,9(7): 975-978.