主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Risk Identification and Warning for Different Copper "Financing" Patterns

Expand
  • 1. School of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China;
    2. Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052, China

Received date: 2014-08-11

  Revised date: 2014-10-31

  Online published: 2015-08-19

Abstract

To guard against the risks of copper "financing" in real need, three different copper "financing" patterns were put forward. And the interest rate risk, the volatility risk of RMB and price of subject and their correlation in the process of copper "financing" operation were analyzed. Based on the profit and the risk factor data from May 2011 to April 2014, the single risk and comprehensive risk were identified and simulated according to GARCH-Copulas model. Then the distributions of comprehensive risk in different patterns were compared in order to make warnings based on Value at Risk. The results show that the copper "financing" is a kind of arbitrage, and its comprehensive risk income has the right skewness and the characteristic of rush fat-tailed distribution, and under the same confidence level, the Value at Risk of comprehensive risk is significantly higher than that of single risk. Copper "financing " exists extreme loss, and in case of extreme loss, the enterprise itself and the financial system will face to adverse effects. In order to guide the capital back to the real economy, relevant regulators must pay close attention and implement control to copper "financing".

Cite this article

ZHANG Hai-liang, LU Man, WU Chong-feng . Risk Identification and Warning for Different Copper "Financing" Patterns[J]. Chinese Journal of Management Science, 2015 , 23(8) : 10 -17 . DOI: 10.16381/j.cnki.issn1003-207x.2015.08.002

References

[1] 陈旭峰,岳长锁. 警惕"融资铜"的国内外风险[J]. 中国城乡金融报,2014,(03):1.

[2] 惠晓峰,柳鸿生,胡伟,等. 基于时间序列 GARCH 模型的人民币汇率预测[J]. 金融研究,2003,(5): 99-105.

[3] 陈王,魏宇,淳伟德,等. 中国股市与周边股市波动风险传导效应研究[J]. 中国管理科学,2011,19(6):31-39.

[4] Frey R,McNeil A J,Nyfeler M. Copulas and credit models[J]. Risk,2001,(10):111-114.

[5] 韦艳华,张世英. 多元 Copula-GARCH 模型及其在金融风险分析上的应用[J]. 数理统计与管理,2007,26(3):432-439.

[6] 李建平,丰吉闯,宋浩,等. 风险相关性下的信用风险、市场风险和操作风险集成度量[J]. 中国管理科学,2010,18(1):18-25.

[7] Fantazzini D. Dynamic copula modelling for value at risk[J]. Frontiers in Finance and Economics,2008,5(2):72-108.

[8] Palaro H P, Hotta L K. Using conditional copulas to estimate Value at Risk[J]. Journal of Data Science,2006,4(1):93-115.

[9] 施恬. 商业银行利率风险管理中久期缺口测算及其防御策略[J]. 上海金融,2014,(5):103-106.

[10] 郑振龙,吴颖玲. 中国利率风险溢酬:时变特征与影响因素[J]. 数理统计与管理,2012,31(3):537-545.

[11] 杨婉茜,成力为. 基于Nelson-Siegel模型控制利率风险的资产负债组合优化模型[J]. 系统工程,2014,32(2):12-20.

[12] Adler M,Dumas B. Exposure to currency risk: Definition and measurement[J]. Financial management,1984,13(2):41-50.

[13] 钟懿辉,张秋虹. 汇率风险对企业集团出口项目的影响及其对策研究[J]. 经济与管理研究,2012,(4):120-123.

[14] Chit M M, Rizov M, Willenbockel D. Exchange rate volatility and exports: New empirical evidence from the emerging East Asian economies[J]. World Economy,2010,33(2):239-263.

[15] He Juan,Jiang Xianglin,Wang Jian, et al. VaR methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return[J]. European Journal of Operational Research,2012,223(1):106-115.

[16] 李毅学,汪寿阳,冯耕中. 物流金融中季节性存货质押融资质押率决策[J]. 管理科学学报,2011,14(11):19-32.

[17] Schneeweis T,Gupta B,Mustafokulov E. The USDX as an investment and trading vehicle: An update[R]. Working paper,University of Massachusetts,2006.

[18] 李建斌,杨瑞娜. 现货价格和需求关联时期权组合合约模式下采购风险管理策略[J]. 中国管理科学,2011,19(1):12-20.

[19] 花俊洲,吴冲锋,刘海龙,等. 期铜套期保值有效性实证研究[J]. 系统工程理论方法应用,2003,12(3):204-208.

[20] Engle R F,Kroner K F. Multivariate simultaneous generalized ARCH[J]. Econometric Theory,1995,11(1):122-150.

[21] 汪冬华,黄康,龚朴.我国商业银行整体风险度量及其敏感性分析——基于我国商业银行财务数据和金融市场公开数据[J].系统工程理论与实践,2013,33(2):284-295.

[22] Lien D,Yang Li. Hedging with Chinese metal futures[J]. Global Finance Journal,2008,19(2):123-138.
Outlines

/