主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

An Innovation of Estimating Value at Risk of International Carbon Market:Conditional Autoregressive Value at Risk Models with Refinements from Extreme Value Theory

Expand
  • 1. School of Management, Hefei University of Technology, Hefei 230009, China;
    2. School of Economics, Hefei University of Technology, Hefei 230601, China

Received date: 2014-05-08

  Revised date: 2015-04-10

  Online published: 2015-12-01

Abstract

The price of carbon assets fluctuates heavily because of the global economy, politics, energy, and so on, thus it has been of realistic significance to have research on the risk measurement of carbon market. In this paper, EUA and CER markets are taken as the research objects, and the performance of CAViaR model and GARCH-GED model in measuring the risk of carbon markets under the different prediction intervals and confidence levels are compared, finding that:(1) CAViaR model is better than GARCH-GED model in fitting and prediction; (2) CER market has greater uncertainty relative to EUA market; (3) when predicting 1%VaR, the CAViaR model is instable. In hope of a better prediction effect, this paper takes the combination of CAViaR model and EVT is taken to predict 1%VaR, finding that the prediction of EVT-CAViaR model is more steady and reliable under the high-risk prediction intervals and the CER market, therefore a conclusion can be made that this new method promises to partly improve the prediction accuracy of the extreme risk of carbon markets.

Key words: carbon market; CAViaR; EVT; VaR

Cite this article

ZHANG Chen, DING Yang, WANG Wen-jun . An Innovation of Estimating Value at Risk of International Carbon Market:Conditional Autoregressive Value at Risk Models with Refinements from Extreme Value Theory[J]. Chinese Journal of Management Science, 2015 , 23(11) : 12 -20 . DOI: 10.16381/j.cnki.issn1003-207x.2015.11.002

References

[1] 朱帮助,王平,魏一鸣.基于EMD的碳市场价格影响因素多尺度分析[J].经济学动态,2012,(06):92-97.

[2] 张跃军,魏一鸣.化石能源市场对国际碳市场的动态影响实证研究[J].管理评论,2010,(06):34-41.

[3] Li Jianping, Tang Ling, Sun Xiaolei, et al. Oil-importing optimal decision considering country risk with extreme events:A multi-objective programming approach[J]. Computers & Operations Research, 2014, 42:108-115.

[4] Benz E, Trück S. Modeling the price dynamics of CO2 emission allowances[J]. Energy Economics, 2009, 31(1):4-15.

[5] Montagnoli A, De Vries F P. Carbon trading thickness and market efficiency[J]. Energy Economics, 2010, 32(6):1331-1336.

[6] 汪文隽,缪柏其,鲁炜.基于Copula的QDⅡ与排放权资产的投资组合构建[J].数理统计与管理,2011,30(05):922-929.

[7] 淳伟德,王璞.基于EVT的碳金融市场收益率尾部特征研究[J].社会科学研究,2012,(03):17-20.

[8] 杨超,李国良,门明.国际碳交易市场的风险度量及对我国的启示——基于状态转移与极值理论的VaR比较研究[J].数量经济技术经济研究,2011,(04):94-109.

[9] Mi Zhifu, Zhang Yuejun. Estimating the value at risk of EUA futures prices based on the extreme value theory[J]. International Journal of Global Energy Issues, 2011, 35(2):145-157.

[10] 张晨,杨玉,张涛.基于Copula模型的商业银行碳金融市场风险整合度量[J].中国管理科学,2015,23(4):70-78.

[11] Koenker R, Bassett Jr G. Regression quantiles[J]. Econometrica:journal of the Econometric Society, 1978,46(1):33-50.

[12] 许启发,张金秀,蒋翠侠.基于非线性分位数回归模型的多期VaR风险测度[J].中国管理科学,2015,23(3):56-65.

[13] Engle R F, Manganelli S. CAViaR:Conditional value at risk by quantile regression[R]. Working Paper, National bureau of economic research, 1999.

[14] Engle R F, Manganelli S. CAViaR:Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business & Economic Statistics, 2004, 22(4):367-381.

[15] Nelson D B. ARCH models as diffusion approximations[J]. Journal of Econometrics, 1990, 45(1):7-38.

[16] 张跃军,范英,魏一鸣.基于GED-GARCH模型的中国原油价格波动特征研究[J].数理统计与管理, 2007, 26(3):398-406.

[17] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of econometrics, 1986, 31(3):307-327.

[18] 陈倩.基于极值理论的商业银行操作风险度量研究[J].中国管理科学,2012,(专辑):332-339.

[19] Gilli M. An application of extreme value theory for measuring financial risk[J]. Computational Economics, 2006, 27(2-3):207-228.

[20] McNeil A J, Frey R, Embrechts P. Quantitative risk management:Concepts, techniques, and tools[M]. Princeton, NewJersey:Princeton University Press, 2010.

[21] Manganelli S, Engle R F. Value at risk models in finance[R]. Working Paper, Frankfurt am Main:European Central Bank, 2001.

[22] Schaumburg J. Predicting extreme value at risk:Nonparametric quantile regression with refinements from extreme value theory[J]. Computational Statistics & Data Analysis, 2012, 56(12):4081-4096.

[23] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. The Journal of Derivatives, 1995, 3(2):73-84.
Outlines

/