主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Pairs Trading Strategy Research Considering Short Selling and Margin Trading: A Two-Stage Approach Based on Cointegration and Distance Methods

Expand
  • 1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China;
    2. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2015-03-01

  Revised date: 2015-05-26

  Online published: 2016-04-29

Abstract

China has established the policy of short selling and margin trading, which enables the pairs trading strategy to be a promising tool for financial investment. This study tries to formulate a two-stage pairs trading strategy based on cointegration method and distance estimation. In particular, the cointegration approach is applied to all possible pairs of stocks to check the potential cointegration relationship, and the distances of the pairs with cointegration relationship are measured to finally determine the optimal pairs with minimum distances. Furthermore, the optimal pairs portfolio is given weighted by cointegration coefficients under finite investment budget, considering short selling and margin trading. To verify the effectiveness of proposed approach, the Shanghai 50 Index stocks are used as study samples. Empirical results show that the novel two-stage model outperforms the benchmark model only considering cointegration relationship, in term of excess returns. Besides, the sensitivity analysis confirms the robustness of the model.

Cite this article

HU Lun-chao, YU Le-an, TANG Ling . Pairs Trading Strategy Research Considering Short Selling and Margin Trading: A Two-Stage Approach Based on Cointegration and Distance Methods[J]. Chinese Journal of Management Science, 2016 , 24(4) : 1 -9 . DOI: 10.16381/j.cnki.issn1003-207x.2016.04.001

References

[1] Alexander C, Dimitriu A. The cointegration alpha: Enhanced index tracking and long-short equity market neutral strategies . Discussion Paper,ISMA Centre, 2002.

[2] Alexander C, Giblin I, Wayne W. Cointegration and asset allocation: A new active hedge fund strategy [J]. Research in International Business and Finance, 2002,16: 65-90.

[3] Bogomolov T. Pairs trading in the land down under//proceedings of the Finance and Corporate Governance Conference, Bundoora, Australia, 2011.

[4] Do Binh R F, Kais Hamza. A new approach to modeling and estimation for pairs trading.Working Paper, Monash University, 2006.

[5] Elliott R J, Van Der Hoek J, Malcolm W P. Pairs trading [J]. Quantitative Finance, 2005, 5(3): 271-276.

[6] Ehrman D S. The handbook of pairs trading: Strategies using equities, options, and futures [M].New York: John Wiley & Sons, 2006.

[7] Engle R F, Yoo B S. Forecasting and testing in co-integrated systems [J]. Journal of econometrics, 1987, 35(1): 143-159.

[8] Gatev E, Goetzmann W N, Rouwenhorst K G. Pairs trading: Performance of a relative-value arbitrage rule [J]. Review of Financial Studies, 2006, 19(3): 797-827.

[9] Gillespie T, Ulph C. Pair trades methodology: A question of mean reversion//Proceedings of International Conference on Statistics, Combinatorics and Related Areas and the 8th International Conference of Forum for Interdisciplinary Mathematics, NSW, 2001.

[10] Hong G, Raul S. Pairs-trading in the Asian ADR market .Working Paper, University of Houston, 2004.

[11] Lin Yanxia, McCRAE M, Gulati C. Loss protection in pairs trading through minimum profit bounds: A cointegration approach [J]. Journal of Applied Mathematics and Decision Sciences, 2006:1-14.

[12] Miao G J. High frequency and dynamic pairs trading based on statistical arbitrage using a two-stage correlation and cointegration approach [J]. International Journal of Economics and Finance, 2014, 6(3): 96-110.

[13] Nath P. High frequency pairs trading with us treasury securities: Risks and rewards for hedge funds [J]. Available at SSRN eLibrary, 2003.

[14] Nakagawa T, Iwahori Y, Bhuyan M. Defect classification of electronic board using multiple classifiers and grid search of SVM parameters [M]//Lee R. Computer and Information Science. Springer.International Publishing, 2013: 115-127.

[15] Puspaningrum H. Pairs trading using cointegration approach . Wollongong; University of Wollongong, 2012.

[16] Vidyamurthy G. Pairs trading: Quantitative methods and analysis [M]. New York:John Wiley & Sons, 2004.

[17] 仇中群, 程希骏. 基于协整的股指期货跨期套利策略模型 [J]. 系统工程, 2008, 26(12): 26-29.

[18] 蒋翠清, 梁坤, 丁勇,等. 基于社会媒体的股票行为预测[J]. 中国管理科学, 2015,23(1): 17-24.

[19] 金恺. 基于协整方法的沪深 300 成分股配对交易研究 .杭州:浙江大学, 2013.

[20] 麦永冠, 王苏生. WM-FTBD 配对交易建仓改进策略及沪深港实证检验 [J]. 管理评论, 2014, 26(1): 30-40.

[21] 邵超, 范宏. 时间参数的设定对配对交易收益率的影响 [J]. 经济管理学刊: 中英文版, 2013, 2(5): 183-188.

[22] 王春. 投资者情绪对股票市场收益和波动的影响-基于开放式股票型基金资金净流入的实证研究[J]. 中国管理科学, 2014,22(9): 49-56.

[23] 徐沐霖. 基于协整的配对交易研究 .济南:山东大学, 2013.

[24] 朱少醒, 张则斌, 吴冲锋. "羊群效应" 与股票收益分布的厚尾特性 [J]. 上海交通大学学报, 1999, 4(7): 40-43.

[25] 张来军, 杨治辉, 路飞飞. 基于复杂网络理论的股票指标关联性实证分析[J]. 中国管理科学, 2014,22(12): 85-92.
Outlines

/