主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Research on the Nonlinearity of Seasonal Fluctuations of China's Industrial Added Value——Based on SEATV-STAR model

Expand
  • 1. Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, China;
    2. School of Mathematics and Statistics, Hubei University, Wuhan 430062, China;
    3. Department of Scientific Research, Zhongnan University of Economics and Law, Wuhan 430073, China

Received date: 2014-10-26

  Revised date: 2015-04-17

  Online published: 2016-04-29

Abstract

Most of the macroeconomic time series have seasonal fluctuations and if the seasonal fluctuations are truly nonlinear, then the methods of seasonal adjusted or traditional season models using linear methods to deal with seasonal fluctuations are may be improper. Based on SEATV-STAR model, "from the special to general" testing strategies ware applied to investigate the seasonal fluctuation of China's industrial added value and the results are as follows: seasonal fluctuation of industrial added value has the properties of structural time-varying and nonlinear change, while the periodic fluctuation is linear. The factors such as technological progress and economic system transition are the main influence factors to cause seasonal fluctuation's continuous structural change. Besides, cyclical fluctuation of industrial added value results in seasonal fluctuation's asymmetric change. In the peak periods of industrial added value, seasonal amplitude reduce while quarter 1th&2nd's growth speed improve significantly.

Cite this article

WEI Li-li, XIANG Shu-jian . Research on the Nonlinearity of Seasonal Fluctuations of China's Industrial Added Value——Based on SEATV-STAR model[J]. Chinese Journal of Management Science, 2016 , 24(4) : 10 -18 . DOI: 10.16381/j.cnki.issn1003-207x.2016.04.002

References

[1] Lundbergh S, Teräsvirta T,van Dijk D. Time-varying smooth transition autoregressive models[J]. Journal of Business and Economic Statistics,2003,21(1): 104-121.

[2] 杜勇宏,王健. 季节时变序列理论与应用[M]. 南京:南京大学出版社,2008.

[3] Burns A F, Mitchell W C. Measuring business cycles. Working Paper,National Bureau of Economic Research,1946.

[4] Miron J A,Beaulieu J J. What have macroeconomists learned about business cycles from the study of seasonal cycles?[J]. The Review of Economics and Statistics,1996,(1):54-66.

[5] Miron J A. The economics of seasonal cycles[M] .MA:MIT press. Cambridge, Massachusetts London, England, 1996.

[6] Carpenter R E,Levy D. Seasonal cycles, business cycles, and the comovement of inventory investment and output[J]. Journal of Money, Credit and Banking,1998,3(3):331-346.

[7] Hylleberg S, Engle R F, Granger C W J,et al. Seasonal integration and cointegration[J]. Journal of Econometrics,1990,44(1):215-238.

[8] Beaulieu J J,Miron J A. Seasonal unit roots in aggregate U.S. data. Technical Paper,NBER,1992.

[9] Bollerslev Tim, Eric G. Periodic autoregressive conditional heterosedasticity[J]. American Statistical Association, 1996, 14(2):139-151.

[10] Franses P H, Bruin P de,van Dijk D. Seasonal smooth transition autoregression[J]. Econometric Institute Report, 2000,(6):1-34.

[11] Matas-Mir A,Osborn D R. Does seasonality change over the business cycle? An investigation using monthly industrial production series[J]. European Economic Review,2004,48(6):1309-1332.

[12] van Dijk D, Strikholm B,Teräsvirta T. The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series[J]. Journal of Business and Economic Statistics, 2003,6(1):104-121.

[13] Ajmi A N, Nasr A B,Boutahar M. Seasonal nonlinear long memory model for the US inflation rates[J]. Computational Economics,2008,31:243-254.

[14] Ajmi A N,Montasser G E. Seasonal bi-parameter smooth transition autoregressive modes for the UK industrial production index[J]. Applied Mathematical Sciences,2012,6(32):1541-1562.

[15] 贺凤羊,刘建平.如何对中国CPI进行季节调整-基于X-12-ARIMA方法的改进[J]. 数量经济技术经济研究, 2011, (5):110-124.

[16] 吴岚,朱莉,龚小彪. 基于季节调整技术的我国物价波动实证研究[J]. 统计研究, 2012, (9):61-65.

[17] 彭志行,鲍昌俊,赵扬,等. ARIMA乘积季节模型及其在传染病发病预测中的应用[J]. 数理统计与管理, 2008, 27(2):362-368.

[18] 朱宗元. 我国保险赔付的时间序列分析:建模与预测 [J]. 数理统计与管理, 2010, 29(4): 698-704.

[19] 牛东晓, 孟明. 季节型增长趋势电力消费预测研究:基于中国的实证分析[J]. 中国管理科学, 2010, 18(2):108-112.

[20] 刘卓军,柳刚. 安全事故现状与趋势分析方法研究[J]. 中国管理科学, 2010,18(4):183-192.

[21] 张大斌,李红燕,刘肖,张文生. 非线性时间序列的小波模糊神经网络集成预测方法[J]. 中国管理科学, 2013, (S2):647-651.

[22] Teräsvirta T. Specification, estimation and evaluation of smooth transition autoregressive models[J]. Journal of the American Statistical Association, 1994, 89(425):208-218.

[23] Lin C F J,Teräsvirta T. Testing the constancy of regression parameters against continuous structural change[J]. Journal of Econometrics, 1994, 62(2):211-228.

[24] Dijk D V,Franses P H. Modeling multiple regimes in the business cycles[J]. Macroeconomic Dynamics,1999,3(3): 311-340.

[25] Eitrheim ∅,Teräsvirta T. Testing the adequacy of smooth transition autoregressive models[J]. Journal of Econometrics, 1996, 74(1) :59-75.

[26] 高铁梅.计量经济分析方法与建模-Eviews应用及实例(第二版)[M].北京:清华大学出版社,2009.
Outlines

/