主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

A Group Evaluation Method and Application Based on Collaboration of Subject and Object under Interval Information

Expand
  • School of Economics & Management, Nanchang University, Nanchang 330031, China

Received date: 2015-06-14

  Revised date: 2015-12-11

  Online published: 2016-07-05

Abstract

In classical single criterion group evaluation methods, the ratings that experts (the subject) have given for the object evaluated are usually exact data. In addition, the evaluation process is also generally dominated by the subject with lack of the object participation. However, the ratings given are human judgements including preferences that may be vague; using interval data should be more suitable. Otherwise, with the circumstance of emphasizing democracy and freedom, participation of the object (especially when the object is human) in evaluation process is rather essential. Therefore, a group evaluation method based on collaboration of subject and object is put forward under interval information. In this paper, an Interval Induced Density Weighted Algorithm-IIDWA is presented to aggregate interval data. Firstly, completeness of subject information-μand integrity of object information-ωare calculated, by which original interval data are clustered into right group. Secondly, ultimate weight vector of each group are synthesized by their attribute weight vector-ξ? and scale weight vector-ξe, so it will possess the superiority of containing the characteristics of attribute and scale of each group. Finally, information of subject and object are aggregated respectively by IIDWAto obtain interval comprehensive results and then possibility degree approach of interval data is conducted for ranking. In the end, a numerical example is given to illustrate the feasibility and validity of this paper. Meanwhile, the result based on the TOPSIS method with interval data is also calculated in order to compare the existing difference with ranking of this paper. As the result of the two methods show, the ranking is different, which indicates that participation of the object can make contribution to the ranking result. In this paper, the complementation of the subject and object information has been implementated.

Cite this article

ZHANG Fa-ming, LI Xiao-shuang . A Group Evaluation Method and Application Based on Collaboration of Subject and Object under Interval Information[J]. Chinese Journal of Management Science, 2016 , 24(6) : 143 -150 . DOI: 10.16381/j.cnki.issn1003-207x.2016.06.017

References

[1] 郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2007.

[2] 张发明,郭亚军,易平涛. 一种主客方协作式群体评价方法及其应用[J]. 中国管理科学,2010, 18(04):145-151.

[3] 张发明. 一种主客方交互式群体评价方法及其应用[J]. 管理学报,2011,8(11):1714-1718.

[4] Zhao Hua, Xu Zheshui. Group decision making with density-based aggregation operators under interval-valued intuitionistic fuzzy environments[J]. Journal Of Intelligent & Fuzzy Systems. 2014,27(2):1021-1033.

[5] 董庆兴,郭亚军,马凤妹. 基于主客体协作的群组评价方法[J]. 运筹与管理,2012,21(4):166-172.

[6] Herrera F,Herrera-Viedma E,Verdegay J L. A model of consensus in group decision making under linguistic assessments[J].Fuzzy Sets and Systems,1996,78(1):73-87.

[7] Xia Meimei, Chen Jian. Multi-criteria group decision making based on bilateral agreements[J]. European Journal Of Operational Research. 2015,240(3):756-764.

[8] 易平涛,郭亚军,李伟伟.基于密度算子的多阶段群体评价方法及应用[J]. 东北大学学报(自然科学版), 2013, 2(5):752-756.

[9] Xu Zeshui,Yager P R. Power-geometric operators and their use in group decision making[J]. IEEE Transactions on Fuzzy System, 2010,18(1):94-105.

[10] Zeng Shuozeng, Li Wei, Merigó J M. Extended induced ordered weighted averaging distance operators and their application to group decision-making[J]. International Journal of Information Technology & Decision Making, 2013, 12(4):789-811.

[11] Henningsen D, Henningsen M. A preliminary examination of perceptions of social influence in group decision making in the workplace[J]. Journal Of Business Communication, 2015,52(2):188-204.

[12] Su Weihua, Zeng Shouzheng, Ye Xiaojia. Uncertain group decision making with induced aggregation operators and Euclidean distance[J]. Technological & Economic Development of Economy, 2013, 19(3):431-447.

[13] Li Dengfeng, Huang Zhigang, Chen Guohong. A systematic approach to heterogeneous multiattribute group decision making[J]. Computers & Industrial Engineering. 2010, 59(4):561-572.

[14] 张发明,郭亚军,易平涛.序关系分析下的多阶段交互式群体评价方法[J].系统工程学报, 2011,59(26):702-709.

[15] 余雁,梁樑,罗彪. 基于自互评体系的竞争性评估方法研究[J]. 系统工程,2004,22(5):94-97.

[16] 郭亚军,何志勇,董飞飞. 基于双重优势的自主式综合评价方法[J]. 系统工程与电子技术,2011,33(12):2668-2671.

[17] 董庆兴,郭亚军,何志勇. 基于竞合视角的自主式综合评价方法[J]. 系统管理学报,2012,21(2):180-185.

[18] 徐泽水,达庆利. 区间数排序的可能度法及其应用[J]. 系统工程学报,2003,18(1):67-70.

[19] Jahanshahloo G R,Hosseinzadeh L F,Izadikhah M.An algorithmic method to extend TOPSIS for decision-making problems with interval data[J].Applied Mathematics and Computation,2006,175(2):1375-1384.

[20] 尤天慧,樊治平. 区间数多指标决策中确定指标权重的一种客观赋权法[J]. 中国管理科学,2003,11(2):93-96.

[21] 刘健,刘思峰. 属性值为区间数的多属性决策对象排序研究[J]. 中国管理科学,2010,18(3):90-94.

[22] 吴江,黄登仕. 区间数排序方法研究综述[J]. 系统工程,2004,22(8):1-4.

[23] 孙海龙,姚卫星. 区间数排序方法评述[J]. 系统工程学报,2010,25(3):304-312.

[24] 徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社,2004.

[25] 侯芳,郭亚军. 区间数密度中间算子在多属性决策中的应用[J]. 东北大学学报(自然科学版),2008,29(10):1509-1516.

[26] 李伟伟,易平涛,郭亚军. 区间数密度算子及其应用[J]. 东北大学学报(自然科学版),2012,33(7):1043-1046.

[27] 贺芳. 基于改进区间数密度集结算子指标群赋权方法[J]. 运筹与管理,2013,(4):133-138.

[28] 张发明,闻琴,汪红林. 二维区间密度加权算子及其应用[J]. 应用泛函分析学报,2014,16(2):97-104.
Outlines

/