Based on the defects that are unable to determine the partial order relations other than constant returns to scale model of the data envelopment analysis method based on partially ordered set theory, a new method and algorithm which determine partial order relations of three different frequently used models are provided. This algorithm can not only give the partial order matrix among the various decision making units but also visualize the results directly, which should provide important decision making information for decision-makers. At last, this method is used in the evaluation of a Provincial Natural Science Fund.
MU Ren, MA Zhan-xin, WEN Zong-chuan
. The Establishment of Partial Ordered Relations among Decision Making Units in Data Envelopment Analysis Method[J]. Chinese Journal of Management Science, 2016
, 24(11)
: 103
-108
.
DOI: 10.16381/j.cnki.issn1003-207x.2016.11.012
[1] 马占新,数据包络分析模型与方法[M]. 北京:科学出版社, 2010: 1-17.
[2] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444.
[3] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management Science, 1984, 30(9): 1078-1092.
[4] Färe R, Grosskopf S. A nonparametric cost approach to scale efficiency[J]. The Scandinavian Journal of Economics, 1985,87(4): 594-604.
[5] Seiford L M, Thrall R M. Recent developments in DEA: The mathematical programming approach to frontier analysis[J]. Journal of Econometrics, 1990, 46(1): 7-38.
[6] Charnes A, Cooper W W, Wei Q L, et al. Compositive data envelopment analysis and multiobjective programming[J]. Center for Cybernetic Studies Report, CCS, 1988, 633.
[7] Sengupta J K. Data envelopment analysis for efficiency measurement in the stochastic case[J]. Computers & Operations Research, 1987, 14(2): 117-129.
[8] Sengupta J K. A fuzzy systems approach in data envelopment analysis[J]. Computers & Mathematics with Applications, 1992, 24(8): 259-266.
[9] Entani T, Maeda Y, Tanaka H. Dual models of interval DEA and its extension to interval data[J]. European Journal of Operational Research, 2002, 136(1): 32-45.
[10] Andersen P, Petersen N C. A procedure for ranking efficient units in data envelopment analysis[J]. Management science, 1993, 39(10): 1261-1264.
[11] 马占新, 唐焕文. DEA 有效单元的特征及 SEA 方法[J]. 大连理工大学学报, 1999, 39(4): 577-582.
[12] 评价相对有效性的数据包络分析模型: DEA 和网络 DEA[M]. 北京:中国人民大学出版社, 2012.
[13] Coelli T. A multi-stage methodology for the solution of orientated DEA models[J]. Operations Research Letters, 1998, 23(3): 143-149.
[14] 王应明, 蓝以信.基于双前沿面数据包络分析的循环全局Malmquist指数[J].中国管理科学, 2015, 23(11): 46-55.
[15] 董进全, 邱程程, 马占新, 等. 拟凹生产函数的分区域估计[J] .中国管理科学, 2015, 23(3):32-41.
[16] 周忠宝, 丁慧, 马超群, 等. 考虑交易成本的投资组合效率估计方法[J] .中国管理科学, 2015, 23(1):25-33.
[17] 李春好, 苏航, 佟轶杰, 等. 基于理想决策单元参照求解策略的DEA交叉效率评价模型[J] .中国管理科学, 2015, 23(2):116-122.
[18] 崔玉泉, 张宪, 芦希, 等. 随机加权交叉效率下的资源分配问题研究[J] .中国管理科学, 2015, 23(1):121-127.
[19] 张启平, 刘业政, 姜元春. 决策单元交叉效率的自适应群评价方法[J].中国管理科学, 2014, 22(11): 62-71.
[20] 雷西洋, 戴前智, 李勇军, 等. 考虑系统内部平行结构的DEA资源分摊方法[J],中国管理科学, 2015, 23(1): 50-55.
[21] 石晓,谢建辉,李勇军,等. 非合作博弈两阶段生产系统DEA并购效率评价[J]. 中国管理科学,2015,23(7):60-67.
[22] 薛晖,郑中华,谢启伟. 基于多种DEA模型和Gini准则的效率评价方法—兼对我国高校运营绩效的评价[J]. 中国管理科学,2014,22(4):98-104.
[23] 杨宏林,崔晨,查勇,等. 价值与动量混合策略DEA多期限资产组合选择及效率评价[J]. 中国管理科学,2015,23(6):57-64.
[24] 马占新, 唐焕文, 戴仰山. 偏序集理论在数据包络分析中的应用研究[J]. 系统工程学报, 2002, 17(1): 19-25.
[25] 木仁, 马占新, 崔巍. 基于偏序集理论的数据包络分析方法[J]. 系统工程与电子技术, 2013, 35(2): 350-356.
[26] 木仁,李蒙,马占新. 数据包络分析方法中一种新偏序关系确定方法[J]. 内蒙古大学学报(自然科学版),2016,01:1-7.
[27] 木仁, 马占新, 长青. 基于格理论的数据包络分析方法[J]. 系统工程与电子技术, 2014, 36(9): 1782-1787.
[28] 木仁, 马占新. 决策单元特殊关系的挖掘与建立[J]. 控制与决策, 2015, 30(2): 335-342.